How Does Fire Exclusion Affect the Belowground Biomass of Tropical Open Ecosystems?
Corresponding Author
Juliana Teixeira
Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
Lab of Vegetation Ecology, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
Correspondence:
Juliana Teixeira ([email protected])
Search for more papers by this authorLara Souza
School of Biological Sciences & Oklahoma Biological Survey, The University of Oklahoma, Norman, Oklahoma, USA
Search for more papers by this authorAline Bombo
Lab of Vegetation Ecology, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
Search for more papers by this authorSoizig Le Stradic
Chair of Restoration Ecology, Ecology and Ecosystem Management Department, Technische Universität München, Freising, Germany
BIOGECO Biodiversity, Genes & Communities, UMR INRAE/University of Bordeaux, Pessac, France
Search for more papers by this authorCorresponding Author
Juliana Teixeira
Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
Lab of Vegetation Ecology, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
Correspondence:
Juliana Teixeira ([email protected])
Search for more papers by this authorLara Souza
School of Biological Sciences & Oklahoma Biological Survey, The University of Oklahoma, Norman, Oklahoma, USA
Search for more papers by this authorAline Bombo
Lab of Vegetation Ecology, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
Search for more papers by this authorSoizig Le Stradic
Chair of Restoration Ecology, Ecology and Ecosystem Management Department, Technische Universität München, Freising, Germany
BIOGECO Biodiversity, Genes & Communities, UMR INRAE/University of Bordeaux, Pessac, France
Search for more papers by this authorFunding: This project was financially supported by the National Geographic Society (NGS 51903C-18) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/06743-0). J.T. received a grant from the Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq 141715/2018-9). A.B.B. received a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2017/02934-1). J.T. also received travel support from the Bayerisches Hochschulzentrum für Lateinamerika (BAYLAT).
Co-ordinating Editor: Eric Lamb
ABSTRACT
Aim
Belowground biomass, including roots and belowground bud-bearing organs, is crucial in tropical open ecosystems, particularly during post-fire regeneration. However, we still do not understand how variation in fire regime modulates the allocation of biomass in these belowground parts. In two distinct fire regimes, we investigated aboveground and belowground biomass, as well as the distribution of biomass and the composition of bud-bearing belowground organs in open tropical ecosystems.
Location
Five tropical open ecosystems in Brazil (from northern to southeast Brazil).
Methods
We assessed above- and belowground plant biomass across 100 plots (10 plots for each of the two treatment conditions i.e. frequently burnt and fire excluded, and at five sites in total). We sorted out biomass as live aboveground, belowground bud-bearing organs, coarse (> 2 mm) and fine roots (< 2 mm). Bud-bearing belowground organs were classified into morphological categories (e.g., xylopodia, woody rhizome and fleshy rhizome).
Results
Fire-excluded areas had a lower root-to-shoot ratio and lower total belowground-to-aboveground biomass allocation than areas frequently burnt. The total belowground biomass, as well as fine and coarse root biomass and belowground bud-bearing organ biomass, remained unchanged with fire exclusion. The composition of belowground bud-bearing organs changed towards organs with lateral spread, such as woody and fleshy rhizomes, when fire was excluded.
Conclusions
More than 10 years of fire exclusion did not affect the total belowground biomass but changed the composition of bud-bearing belowground organs in tropical open ecosystems. Even after 12 years of fire exclusion, bud-bearing belowground organs were still present in the community, ensuring resilience to fire even if they were not burned regularly.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
All the data supporting this study's findings are available in the Zenodo Repository (https://doi.org/10.5281/zenodo.14901371).
Supporting Information
Filename | Description |
---|---|
jvs70027-sup-0001-AppendixS1.pdfPDF document, 26.6 KB |
Appendix S1. General information about the different open ecosystems’ sampling areas. |
jvs70027-sup-0002-AppendixS2.pdfPDF document, 246.7 KB |
Appendix S2. Tables of belowground allocation variables (mean ± SE), statistical model results and figure for the proportional distribution of the belowground biomass (i.e., fine roots, coarse roots and bud-bearing belowground organs). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Abreu, R. C. R., W. A. Hoffmann, H. L. Vasconcelos, N. A. Pilon, D. R. Rossatto, and G. Durigan. 2017. “The Biodiversity Cost of Carbon Sequestration in Tropical Savanna.” Science Advances 3, no. 8: e1701284. https://doi.org/10.1126/sciadv.1701284.
- Almeida, V. O., R. V. Carneiro, M. A. M. Carvalho, R. C. L. Figueiredo-Ribeiro, and M. G. Moraes. 2015. “Diversity of Non-Structural Carbohydrates in the Underground Organs of Five Iridaceae Species From the Cerrado (Brazil).” South African Journal of Botany 96: 105–111. https://doi.org/10.1016/j.sajb.2014.10.003.
- Alvarado, S. T., T. Fornazari, A. Cóstola, L. P. C. Morellato, and T. S. F. Silva. 2017. “Drivers of Fire Occurrence in a Mountainous Brazilian Cerrado Savanna: Tracking Long-Term Fire Regimes Using Remote Sensing.” Ecological Indicators 78: 270–281. https://doi.org/10.1016/j.ecolind.2017.02.037.
- Alves, R. J. V., N. G. D. Silva, A. J. Fernandes Junior, and A. R. Guimaraes. 2013. “Longevity of the Brazilian Underground Tree Jacaranda Decurrens Cham.” Anais da Academia Brasileira de Ciências 85, no. 2: 671–678. https://doi.or/10.1590/S0001-37652013005000038.
- Apezzato-da-Glória, B. 2015. Morphology of Plant Underground Systems. 3i Editora.
- Appezzato-da-Glória, A. B., G. Curry, M. Kasue, M. Soares, and A. H. Hayashi. 2008. “Underground Systems of Asteraceae Species From the Brazilian Cerrado.” Journal of the Torrey Botanical Society 135, no. 1: 103–113.
- Bai, Y., and M. F. Cotrufo. 2022. “Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions.” Science (New York, N.Y.) 377, no. 6606: 603–608. https://doi.org/10.1126/science.abo2380.
- Beccari, E., and C. P. Carmona. 2024. “Aboveground and Belowground Sizes Are Aligned in the Unified Spectrum of Plant Form and Function.” Nature Communications 15, no. 1: 9199. https://doi.org/10.1038/s41467-024-53180-x.
- Bolker, B. 2019. “Getting Started With the glmmTMB Package.” Cran.R-Project Vignette, (2009), 9.
- Bombo, A., F. Siebert, and A. Fidelis. 2021. “Fire and Herbivory Shape Belowground Bud Banks in a Semi-Arid African Savanna.” African Journal of Range & Forage Science 39: 1–11. https://doi.org/10.2989/10220119.2021.1982004.
- Bombo, A. B., B. Appezzato-da-Glória, and A. Fidelis. 2022. “Fire Exclusion Changes Belowground Bud Bank and Bud-Bearing Organ Composition Jeopardizing Open Savanna Resilience.” Oecologia 199, no. 1: 153–164. https://doi.org/10.1007/s00442-022-05172-1.
- Bombo, A. B., B. Appezzato-da-Glória, R. Martins, and A. Fidelis. 2024. “Belowground Organs and Bud Bank: Insights on Morphoanatomical Functional Traits Related to Fire.” Folia Geobotanica 58: 259–273. https://doi.org/10.1007/s12224-023-09437-2.
- Bond, W. J. 2008. “What Limits Trees in C 4 Grasslands and Savannas?” Annual Review of Ecology, Evolution, and Systematics 39, no. 1: 641–659. https://doi.org/10.1146/annurev.ecolsys.39.110707.173411.
- Bond, W. J. 2019. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge. Oxford Univeristy Press.
10.1093/oso/9780198812456.001.0001 Google Scholar
- Bond, W. J., and C. L. Parr. 2010. “Beyond the Forest Edge: Ecology, Diversity and Conservation of the Grassy Biomes.” Biological Conservation 143, no. 10: 2395–2404. https://doi.org/10.1016/j.biocon.2009.12.012.
- Borghetti, F., E. Barbosa, L. Ribeiro, J. F. Ribeiro, and B. M. T. Walter. 2019. “ South American Savannas.” In Savanna Woody Plants and Large Herbivores, edited by P. F. Scogings and M. Sankaran, 1st ed., 77–122. Wiley. https://doi.org/10.1002/9781119081111.ch4.
10.1002/9781119081111.ch4 Google Scholar
- Buisson, E., S. Archibald, A. Fidelis, and K. N. Suding. 2022. “Ancient Grasslands Guide Ambitious Goals in Grassland Restoration.” Science 377, no. 6606: 594–598. https://doi.org/10.1126/science.abo4605.
- Buisson, E., S. Le Stradic, F. A. O. Silveira, et al. 2019. “Resilience and Restoration of Tropical and Subtropical Grasslands, Savannas, and Grassy Woodlands: Tropical Grassland Resilience and Restoration.” Biological Reviews 94, no. 2: 590–609. https://doi.org/10.1111/brv.12470.
- Cardoso, A. W., I. Oliveras, K. A. Abernethy, et al. 2018. “Grass Species Flammability, Not Biomass, Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions.” Frontiers in Forests and Global Change 1: 6. https://doi.org/10.3389/ffgc.2018.00006.
- Chiminazzo, M. A., A. B. Bombo, T. Charles-Dominique, and A. Fidelis. 2023. “To Protect or to Hide: Why Not Both? An Investigation of Fire-Related Strategies in Cerrado Woody Species.” Flora 306: 152350. https://doi.org/10.1016/j.flora.2023.152350.
10.1016/j.flora.2023.152350 Google Scholar
- Clarke, P. J., M. J. Lawes, J. J. Midgley, et al. 2013. “Resprouting as a Key Functional Trait: How Buds, Protection and Resources Drive Persistence After Fire.” New Phytologist 197, no. 1: 19–35. https://doi.org/10.1111/nph.12001.
- Coutinho, L. M. 1990. “ Fire in the Ecology of the Brazilian Cerrado.” In Fire in the Tropical Biota, 82–105. Springer. https://doi.org/10.1007/978-3-642-75395-4_6.
- Dayaram, A., E. T. F. Witkowski, D. C. Raimondo, and M. K. Bamford. 2020. “Carbon-14 Dating When There's No Ring on It: Age of Four Pondoland Grassland Geoxyles and Lessons Learned.” South African Journal of Botany 132: 415–422. https://doi.org/10.1016/j.sajb.2020.06.008.
- De Castro, E. A., and J. B. Kauffman. 1998. “Ecosystem Structure in the Brazilian Cerrado: A Vegetation Gradient of Aboveground Biomass, Root Mass and Consumption by Fire.” Journal of Tropical Ecology 14, no. 3: 263–283. https://doi.org/10.1017/S0266467498000212.
- de Oliveira, F. M. G., and A. Oriani. 2016. “Anatomical Characterization of Vegetative Organs and Scapes of Rondonanthus (Eriocaulaceae, Poales).” Brazilian Journal of Botany 39, no. 4: 1103–1115. https://doi.org/10.1007/s40415-016-0295-6.
10.1007/s40415-016-0295-6 Google Scholar
- Dunn, P. K., and G. K. Smyth. 1996. “Randomized Quantile Residuals.” Journal of Computational and Graphical Statistics 5, no. 3: 236–244. https://doi.org/10.1080/10618600.1996.10474708.
10.1080/10618600.1996.10474708 Google Scholar
- Eberlein, R. L. 1989. “Simplification and Understanding of Models.” System Dynamics Review 5, no. 1: 51–68. https://doi.org/10.1002/sdr.4260050105.
- Eiten, G. 1972. “The Cerrado Vegetation of Brazil.” Botanical Review 38, no. 2: 201–341. https://doi.org/10.1007/BF02859158.
- Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37, no. 12: 4302–4315. https://doi.org/10.1002/joc.5086.
- Fidelis, A., B. Appezzato-da-Glória, V. D. Pillar, and J. Pfadenhauer. 2014. “Does Disturbance Affect Bud Bank Size and Belowground Structures Diversity in Brazilian Subtropical Grasslands?” Flora: Morphology, Distribution, Functional Ecology of Plants 209, no. 2: 110–116. https://doi.org/10.1016/j.flora.2013.12.003.
10.1016/j.flora.2013.12.003 Google Scholar
- Fidelis, A., M. F. d. S. Lyra, and V. R. Pivello. 2013. “Above- and Below-Ground Biomass and Carbon Dynamics in Brazilian Cerrado Wet Grasslands.” Journal of Vegetation Science 24, no. 2: 356–364. https://doi.org/10.1111/j.1654-1103.2012.01465.x.
- Freschet, G. T., E. Kichenin, and D. A. Wardle. 2015. “Explaining Within-Community Variation in Plant Biomass Allocation: A Balance Between Organ Biomass and Morphology Above vs Below Ground?” Journal of Vegetation Science 26, no. 3: 431–440. https://doi.org/10.1111/jvs.12259.
- Gelman, A., and J. Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
10.1017/CBO9780511790942 Google Scholar
- Grace, J., J. S. José, P. Meir, H. S. Miranda, and R. A. Montes. 2006. “Productivity and Carbon Fluxes of Tropical Savannas.” Journal of Biogeography 33: 387–400. https://doi.org/10.1111/j.1365-2699.2005.01448.x.
- Hartig, F., and L. Lohse. 2021. “Package ‘DHARMa’ – Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models 1–61.”
- Honda, E. A., and G. Durigan. 2016. “Woody Encroachment and Its Consequences on Hydrological Processes in the Savannah.” Philosophical Transactions of the Royal Society, B: Biological Sciences 371, no. 1703: 20150313. https://doi.org/10.1098/rstb.2015.0313.
- Jackson, A. R. B., H. A. Mooney, and E. Schulze. 2016. “A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents.” Proceedings of the National Academy of Sciences of the United States of America 94, no. 14: 7362–7366. http://www.jstor.org/stable/42683.
10.1073/pnas.94.14.7362 Google Scholar
- Keeley, J. E., J. G. Pausas, P. W. Rundel, W. J. Bond, and R. A. Bradstock. 2011. “Fire as an Evolutionary Pressure Shaping Plant Traits.” Trends in Plant Science 16, no. 8: 406–411. https://doi.org/10.1016/j.tplants.2011.04.002.
- Klimešová, J., J. Martínková, A. Bartušková, and J. P. Ott. 2023. “Belowground Plant Traits and Their Ecosystem Functions Along Aridity Gradients in Grasslands.” Plant and Soil 487: 39–48. https://doi.org/10.1007/s11104-023-05964-1.
- Klimešová, J., J. Martínková, and G. Ottaviani. 2018. “Belowground Plant Functional Ecology: Towards an Integrated Perspective.” Functional Ecology 32, no. 9: 2115–2126. https://doi.org/10.1111/1365-2435.13145.
- Klimešová, J., J. Martínková, J. G. Pausas, et al. 2019. “Handbook of Standardized Protocols for Collecting Plant Modularity Traits.” Perspectives in Plant Ecology, Evolution and Systematics 40, no. August: 125485. https://doi.org/10.1016/j.ppees.2019.125485.
10.1016/j.ppees.2019.125485 Google Scholar
- Kramer-Walter, K. R., P. J. Bellingham, T. R. Millar, R. D. Smissen, S. J. Richardson, and D. C. Laughlin. 2016. “Root Traits Are Multidimensional: Specific Root Length Is Independent From Root Tissue Density and the Plant Economic Spectrum.” Journal of Ecology 104, no. 5: 1299–1310. https://doi.org/10.1111/1365-2745.12562.
- Le Stradic, S., G. W. Fernandes, and E. Buisson. 2018. “No Recovery of Campo Rupestre Grasslands After Gravel Extraction: Implications for Conservation and Restoration.” Restoration Ecology 26, no. June: S151–S159. https://doi.org/10.1111/rec.12713.
10.1111/rec.12713 Google Scholar
- Le Stradic, S., C. Roumet, G. Durigan, L. Cancian, and A. Fidelis. 2021. “Variation in Biomass Allocation and Root Functional Parameters in Response to Fire History in Brazilian Savannas.” Journal of Ecology 109, no. 12: 4143–4157. https://doi.org/10.1111/1365-2745.13786.
- Lenth, R. 2022. “Package ‘lsmeans’.”
- Lenth, R. V., P. Buerkner, M. Herve, et al. 2022. “emmeans: Estimated Marginal Means, Aka Least-Squares Means.”
- Liaw, A., and M. Wiener. 2002. “Classification and Regression by RandomForest.” R News 2, no. 3: 18–22.
- Lüdecke, D., M. Ben-Shachar, I. Patil, P. Waggoner, and D. Makowski. 2021. “Performance: An R Package for Assessment, Comparison and Testing of Statistical Models.” Journal of Open Source Software 6, no. 60: 3139. https://doi.org/10.21105/joss.03139.
10.21105/joss.03139 Google Scholar
- Marengo, J. A., B. Liebmann, V. E. Kousky, N. P. Filizola, and I. C. Wainer. 2001. “Onset and End of the Rainy Season in the Brazilian Amazon Basin.” Journal of Climate 14, no. 5: 833–852. https://doi.org/10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2.
- McCormack, M. L., I. A. Dickie, D. M. Eissenstat, et al. 2015. “Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes.” New Phytologist 207, no. 3: 505–518. https://doi.org/10.1111/nph.13363.
- Mokany, K., R. J. Raison, and A. S. Prokushkin. 2006. “Critical Analysis of Root: Shoot Ratios in Terrestrial Biomes.” Global Change Biology 12, no. 1: 84–96. https://doi.or/10.1111/j.1365-2486.2005.001043.x.
- Nerlekar, A. N., L. L. Sullivan, and L. A. Brudvig. 2024. “Grassland Restorations Must Better Foster Forbs to Facilitate High Biodiversity.” Restoration Ecology 32, no. 7: e14214. https://doi.org/10.1111/rec.14214.
- Nerlekar, A. N., and J. W. Veldman. 2020. “High Plant Diversity and Slow Assembly of Old-Growth Grasslands.” Proceedings of the National Academy of Sciences of the United States of America 117, no. 31: 18550–18556. https://doi.org/10.1073/pnas.1922266117.
- P. S. Oliveira, and R. J. Marquis, eds. 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press.
10.7312/oliv12042 Google Scholar
- Oliveira, R. S., L. Bezerra, E. A. Davidson, et al. 2005. “Deep Root Function in Soil Water Dynamics in Cerrado Savannas of Central Brazil.” Functional Ecology 19, no. 4: 574–581. https://doi.org/10.1111/j.1365-2435.2005.01003.x.
- Oliveras, I., S. T. Meirelles, V. L. Hirakuri, C. R. Freitas, H. S. Miranda, and V. R. Pivello. 2013. “Effects of Fire Regimes on Herbaceous Biomass and Nutrient Dynamics in the Brazilian Savanna.” International Journal of Wildland Fire 22, no. 3: 368–380. https://doi.org/10.1071/WF10136.
- Ott, J. P., J. Klimešová, and D. C. Hartnett. 2019. “The Ecology and Significance of Below-Ground Bud Banks in Plants.” Annals of Botany 123, no. 7: 1099–1118. https://doi.org/10.1093/aob/mcz051.
- Ottaviani, G., J. Klimešová, T. Charles-Dominique, M. Millan, T. Harris, and F. A. O. Silveira. 2024. “The Underestimated Global Importance of Plant Belowground Coarse Organs in Open Biomes for Ecosystem Functioning and Conservation.” Perspectives in Ecology and Conservation 22, no. 2: 118–121. https://doi.org/10.1016/j.pecon.2024.01.008.
- Ottaviani, G., J. Martínková, T. Herben, J. G. Pausas, and J. Klimešová. 2017. “On Plant Modularity Traits: Functions and Challenges.” Trends in Plant Science 22, no. 8: 648–651. https://doi.org/10.1016/j.tplants.2017.05.010.
- Ottaviani, G., R. Molina-Venegas, T. Charles-Dominique, et al. 2020. “The Neglected Belowground Dimension of Plant Dominance.” Trends in Ecology & Evolution 35, no. 9: 763–766. https://doi.org/10.1016/j.tree.2020.06.006.
- Overbeck, G. E., E. Vélez-martin, S. Menezes, et al. 2022. “Placing Brazil's Grasslands and Savannas on the Map of Science and Conservation.” Perspectives in Plant Ecology, Evolution and Systematics 56: 125687. https://doi.org/10.1016/j.ppees.2022.125687.
- Pausas, J. G., B. B. Lamont, S. Paula, B. Appezzato-da-Glória, and A. Fidelis. 2018. “Unearthing Belowground Bud Banks in Fire-Prone Ecosystems.” New Phytologist 217, no. 4: 1435–1448. https://doi.org/10.1111/nph.14982.
- Pausas, J. G., and S. Paula. 2020. “Grasses and Fire: The Importance of Hiding Buds: A Response to Moore et al. (2019) ‘Effects of Drought and Fire on Resprouting Capacity of 52 Temperate Australian Perennial Native Grasses’.” New Phytologist 226, no. 4: 957–959. https://doi.org/10.1111/nph.15964.
- Pilon, N. A. L., M. G. B. Cava, W. A. Hoffmann, R. C. R. Abreu, A. Fidelis, and G. Durigan. 2021. “The Diversity of Post-Fire Regeneration Strategies in the Cerrado Ground Layer.” Journal of Ecology 109: 154. https://doi.org/10.1111/1365-2745.13456.
- Pires, J. M., and G. T. Prance. 1985. “ The Vegetation Types of the Brazilian Amazon.” In Amazonia: Key Environments, edited by G. T. Prance and T. Lovejoy, 109–145. Pergamon Press.
- Pivello, V. R., I. Vieira, A. V. Christianini, et al. 2021. “Understanding Brazil's Catastrophic Fires: Causes, Consequences and Policy Needed to Prevent Future Tragedies.” Perspectives in Ecology and Conservation 19, no. 3: 233–255. https://doi.org/10.1016/j.pecon.2021.06.005.
- Qi, Y., W. Wei, C. Chen, and L. Chen. 2019. “Plant Root-Shoot Biomass Allocation Over Diverse Biomes: A Global Synthesis.” Global Ecology and Conservation 18, no. 18: e00606. https://doi.org/10.1016/j.gecco.2019.e00606.
- R Core Team. 2021. “R: A Language and Environment for Statistical Computing.”
- Revelle, W. 2021. “psych: Procedures for Psychological, Psychometric, and Personality Research 1–457.”
- Ribeiro, J. F., and B. M. T. Walter. 2008. “ As Principais Fitofisionomias Do Bioma Cerrado.” In Cerrado: Ecologia e Flora, edited by S. M. Sano, S. P. De Almeida, and J. F. Ribeiro, 152–212. Embrapa Cerrados/Embrapa Informações Tecnológica.
- Ripley, B., B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, and D. Firth. 2023. “Package ‘MASS’.”
- Rissi, M. N., M. J. Baeza, E. Gorgone-Barbosa, T. Zupo, and A. Fidelis. 2017. “Does Season Affect Fire Behaviour in the Cerrado?” International Journal of Wildland Fire 26, no. 5: 427–433. https://doi.org/10.1071/WF14210.
- Rodrigues, C. A., H. L. Zirondi, and A. Fidelis. 2021. “Fire Frequency Affects Fire Behavior in Open Savannas of the Cerrado.” Forest Ecology and Management 482, no. July: 118850. https://doi.org/10.1016/j.foreco.2020.118850.
10.1016/j.foreco.2020.118850 Google Scholar
- Rosan, T. M., L. E. O. C. Aragão, I. Oliveras, et al. 2019. “Extensive 21st-Century Woody Encroachment in South America's Savanna.” Geophysical Research Letters 46, no. 12: 6594–6603. https://doi.org/10.1029/2019GL082327.
- Silveira, F. A. O., D. Negreiros, N. P. U. Barbosa, et al. 2016. “Ecology and Evolution of Plant Diversity in the Endangered Campo Rupestre: A Neglected Conservation Priority.” Plant and Soil 403, no. 1–2: 129–152. https://doi.org/10.1007/s11104-015-2637-8.
- Simpson, K. J., E. C. Jardine, S. Archibald, et al. 2021. “Resprouting Grasses Are Associated With Less Frequent Fire Than Seeders.” New Phytologist 230, no. 2: 832–844. https://doi.org/10.1111/nph.17069.
- Staver, A. C., S. Archibald, and S. A. Levin. 2011. “The Global Extent and Determinants of Savanna and Forest as Alternative Biome States.” Science 334, no. 6053: 230–232. https://doi.org/10.1126/science.1210465.
- Stevens, N., C. E. R. Lehmann, B. P. Murphy, and G. Durigan. 2017. “Savanna Woody Encroachment Is Widespread Across Three Continents.” Global Change Biology 23, no. 1: 235–244. https://doi.org/10.1111/gcb.13409.
- Teixeira, J., L. Souza, S. Le Stradic, and A. Fidelis. 2022. “Fire Promotes Functional Plant Diversity and Modifies Soil Carbon Dynamics in Tropical Savanna.” Science of the Total Environment 812, no. 812: 152317. https://doi.org/10.1016/j.scitotenv.2021.152317.
- Tiedemann, A. R., W. P. Clary, and R. J. Barbour. 1987. “Underground Systems of Gambel oak (Quercus Gambelii) in Central Utah.” American Journal of Botany 74, no. 7: 1065–1071.
- Veldman, J. W., E. Buisson, G. Durigan, et al. 2015. “Toward an Old-Growth Concept for Grasslands, Savannas, and Woodlands.” Frontiers in Ecology and the Environment 13, no. 3: 154–162. https://doi.org/10.1890/140270.
- Wickham, H., W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, and C. Woo. 2020. “Package ‘ggplot2’ Title Create Elegant Data Visualisations Using the Grammar of Graphics.”
- Wigley, B. J., A. C. Staver, R. Zytkowiak, A. M. Jagodzinski, and C. Wigley-Coetsee. 2019. “Root Trait Variation in African Savannas.” Plant and Soil 441, no. 1–2: 555–565. https://doi.org/10.1007/s11104-019-04145-3.
- Zupo, T., L. F. Daibes, J. G. Pausas, and A. Fidelis. 2021. “Post-Fire Regeneration Strategies in a Frequently Burned Cerrado Community.” Journal of Vegetation Science 32, no. 1: e12968. https://doi.org/10.1111/jvs.12968.
- Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effects Models and Extensions in Ecology With R. Springer New York. https://doi.org/10.1007/978-0-387-87458-6.
10.1007/978-0-387-87458-6 Google Scholar