Recovery of Hibernating Myocardium: What Is the Role of Surgical Revascularization?
Christopher T. Holley M.D.
Department of Surgery, University of Minnesota, Minneapolis, Minnesota
Search for more papers by this authorEric K. Long Ph.D.
Department of Surgery, University of Minnesota, Minneapolis, Minnesota
Search for more papers by this authorMegan E. Lindsey B.S.
College of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
Search for more papers by this authorEdward O. McFalls M.D. Ph.D
Department of Cardiology, Minneapolis Veterans Affairs Health Care System (VACHS), Minneapolis, Minnesota
Search for more papers by this authorCorresponding Author
Rosemary F. Kelly M.D.
Department of Surgery, University of Minnesota, Minneapolis, Minnesota
Department of Cardiothoracic Surgery, VACHS, Minneapolis, Minnesota
Address for correspondence: Rosemary F. Kelly, M.D., 1 Veterans Drive, Minneapolis, MN 55417. Fax: 612-725-1920; e-mail: [email protected]
Search for more papers by this authorChristopher T. Holley M.D.
Department of Surgery, University of Minnesota, Minneapolis, Minnesota
Search for more papers by this authorEric K. Long Ph.D.
Department of Surgery, University of Minnesota, Minneapolis, Minnesota
Search for more papers by this authorMegan E. Lindsey B.S.
College of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
Search for more papers by this authorEdward O. McFalls M.D. Ph.D
Department of Cardiology, Minneapolis Veterans Affairs Health Care System (VACHS), Minneapolis, Minnesota
Search for more papers by this authorCorresponding Author
Rosemary F. Kelly M.D.
Department of Surgery, University of Minnesota, Minneapolis, Minnesota
Department of Cardiothoracic Surgery, VACHS, Minneapolis, Minnesota
Address for correspondence: Rosemary F. Kelly, M.D., 1 Veterans Drive, Minneapolis, MN 55417. Fax: 612-725-1920; e-mail: [email protected]
Search for more papers by this authorAbstract
Myocardial responses to chronic ischemia represent a continuum of adaptations resulting, over time, in a stress-resistant phenotype. One such adaptation, hibernating myocardium (HM), has increased antioxidant capacity that protects against ischemia-induced oxidative stress. Studies have suggested that revascularization alone may not fully restore cardiac function, highlighting the need for targeted therapies to serve as adjuncts to the innate healing process following revascularization. In our review, we discuss current understanding of HM and the recovery process following surgical revascularization, focusing on animal models of HM to understand implications for human patients. doi: 10.1111/jocs.12477 (J Card Surg 2015;30:224–231)
REFERENCES
- 1 Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–1136.
- 2 Liu GS, Thornton J, Van Winkle DM, et al: Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 1991; 84: 350–356.
- 3 Liu Y, Downey JM: Ischemic preconditioning protects against infarction in rat heart. Am J Physiol 1992; 263: H1107–H1112.
- 4 Schott RJ, Rohmann S, Braun ER, et al: Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 1990; 66: 1133–1142.
- 5 Halestrap AP, Clarke SJ, Khaliulin I: The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 2007; 1767: 1007–1031.
- 6 Di Carli MF, Davidson M, Little R, et al: Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994; 73: 527–533.
- 7 Rahimtoola SH: The Hibernating Myocardium. Am Heart J 1989; 117: 211–221.
- 8 Fallavollita JA, Malm BJ, Canty JM Jr: Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res 2003; 92: 48–55.
- 9 Vanwinkle DM, Thornton JD, Downey DM, et al: The natural-history of preconditioning—Cardioprotection depends on duration of transient ischemia and time to subsequent ischemia. Coronary Artery Dis 1991; 2: 613–619.
- 10 Jenkins DP, Baxter GF, Yellon DM: The pathophysiology of ischaemic preconditioning. Pharmacol Res 1995; 31: 219–224.
- 11 Iliodromitis EK, Papadopoulos C, Paraskevaidis IA, et al: Protection from preconditioning can be reinstated at various reperfusion intervals. Cardiovas Drugs Ther 1996; 10: 341–346.
- 12 Yellon DM, Baxter GF: A “second window of protection” or delayed preconditioning phenomenon: Future horizons for myocardial protection. J Mol Cell Cardiol 1995; 27: 1023–1034.
- 13 Yang XM, Baxter GF, Heads RJ, et al: Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovasc Res 1996; 31: 777–783.
- 14 Canty JM Jr, Suzuki G: Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol 2012; 52: 822–831.
- 15 Canty JM Jr, Fallavollita JA: Chronic hibernation and chronic stunning: A continuum. J Nucl Cardiol 2000; 7: 509–527.
- 16 McFalls EO, Sluiter W, Schoonderwoerd K, et al: Mitochondrial adaptations within chronically ischemic swine myocardium. J Mol Cell Cardiol 2006; 41: 980–988.
- 17 Canty JM Jr, Suzuki G, Banas MD, et al: Hibernating myocardium: Chronically adapted to ischemia but vulnerable to sudden death. Circ Res 2004; 94: 1142–1149.
- 18 McFalls EO, Murad B, Liow JS, et al: Glucose uptake and glycogen levels are increased in pig heart after repetitive ischemia. Am J Physiol Heart Circ Physiol 2002; 282: H205–H211.
- 19 McFalls EO, Baldwin D, Palmer B, et al: Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. Am J Physiol 1997; 272: H343–H349.
- 20 Fallavollita JA, Perry BJ, Canty JM Jr: 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation 1997; 95: 1900–1909.
- 21 Fallavollita JA, Canty JM Jr: Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: Evidence for chronic stunning in pigs. Circulation 1999; 99: 2798–2805.
- 22 Cabrera JA, Butterick TA, Long EK, et al: Reduced expression of mitochondrial electron transport chain proteins from hibernating hearts relative to ischemic preconditioned hearts in the second window of protection. J Mol Cell Cardiol 2013; 60: 90–96.
- 23 Stanley WC, Recchia FA, Lopaschuk GD: Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85: 1093–129.
- 24 Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet 2005; 39: 359–407.
- 25 Wallace DC: Mitochondrial diseases in man and mouse. Science 1999; 283: 1482–1488.
- 26 Boveris A: Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 1977; 78: 67–82.
- 27 Liu Y, Zhao H, Li H, et al: Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 2003; 93: 573–580.
- 28 Zhang DX, Gutterman DD: Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2007; 292: H2023–H2031.
- 29 Yang W, Hekimi S: A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010; 8: e1000556.
- 30 Rhee SG: Redox signaling: Hydrogen peroxide as intracellular messenger. Exp Mol Med 1999; 31: 53–59.
- 31 Shao D, Oka S, Brady CD, et al: Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol 2012; 52: 550–558.
- 32 Chen YR, Zweier JL: Cardiac mitochondria and reactive oxygen species generation. Circ Res 2014; 114: 524–537.
- 33 Page B, Young R, Iyer V, et al: Persistent regional downregulation in mitochondrial enzymes and upregulation of stress proteins in swine with chronic hibernating myocardium. Circ Res 2008; 102: 103–112.
- 34 Mills I, Fallon JT, Wrenn D, et al: Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am J Physiol 1994; 266: H447–57.
- 35 McFalls EO, Kelly RF, Hu Q, et al: The energetic state within hibernating myocardium is normal during dobutamine despite inhibition of ATP-dependent potassium channel opening with glibenclamide. Am J Physiol Heart Circ Physiol 2007; 293: H2945–H2951.
- 36 Fallavollita JA, Logue M, Canty JM Jr: Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: Absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. J Am Coll Cardiol 2001; 37: 1989–1995.
- 37 Firoozan S, Wei K, Linka A, et al: A canine model of chronic ischemic cardiomyopathy: Characterization of regional flow-function relations. Am J Physiol 1999; 276: H446–H455.
- 38 Canty JM Jr, Klocke FJ: Reductions in regional myocardial function at rest in conscious dogs with chronically reduced regional coronary artery pressure. Circ Res 1987; 61: II107–II116.
- 39 Fallavollita JA, Jacob S, Young RF, et al: Regional alterations in SR Ca(2+)-ATPase, phospholamban, and HSP-70 expression in chronic hibernating myocardium. Am J Physiol 1999; 277: H1418–H1428.
- 40 Fallavollita JA: Spatial heterogeneity in fasting and insulin-stimulated (18)F-2-deoxyglucose uptake in pigs with hibernating myocardium. Circulation 2000; 102: 908–914.
- 41 McFalls EO, Hou M, Bache RJ, et al: Activation of p38 MAPK and increased glucose transport in chronic hibernating swine myocardium. Am J Physiol Heart Circ Physiol 2004; 287: H1328–H1334.
- 42 Sharov VG, Todor AV, Silverman N, et al: Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 2000; 32: 2361–2367.
- 43 Kelly RF, Cabrera JA, Ziemba EA, et al: Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation. J Thorac Cardiovasc Surg 2011; 141: 261–268.
- 44 Jameel MN, Li Q, Mansoor A, et al: Long-term preservation of myocardial energetic in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol 2011; 300: H836–H844.
- 45 Heusch G, Sipido KR: Myocardial hibernation: A double-edged sword. Circ Res 2004; 94: 1005–1007.
- 46 Schulz R, Heusch G. Hibernating myocardium. Heart 2000; 84: 587–594.
- 47 Pasquet A, Lauer MS, Williams MJ, et al: Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism. Eur Heart J 2000; 21: 125–36.
- 48 Heusch G, Schulz R, Rahimtoola SH: Myocardial hibernation: A delicate balance. Am J Physiol Heart Circ Physiol 2005; 288: H984–H999.
- 49 Farkouh ME, Domanski M, Sleeper LA, et al: Strategies for multivessel revascularization in patients with diabetes. N Engl J Med 2012; 367: 2375–2384.
- 50 Morice MC, Serruys PW, Kappetein AP, et al: Five-year outcomes in patients with left main disease treated with either percutaneous coronary intervention or coronary artery bypass grafting in the synergy between percutaneous coronary intervention with taxus and cardiac surgery trial. Circulation 2014; 129: 2388–2394.
- 51 Serruys PW, Morice MC, Kappetein AP, et al: Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009; 360: 961–972.
- 52 Farkouh ME, Domanski M, Fuster V: Revascularization strategies in patients with diabetes. N Engl J Med 2013; 368: 1455–1456.
- 53 Carson P, Wertheimer J, Miller A, et al: The STICH trial (Surgical Treatment for Ischemic Heart Failure): Mode-of-death results. JACC Heart Failure 2013; 1: 400–408.
- 54 Vanoverschelde JL, Wijns W, Depre C, et al: Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993; 87: 1513–1523.
- 55 Depre C, Vanoverschelde JL, Melin JA, et al: Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995; 268: H1265–H1275.
- 56 Bito V, van der Velden J, Claus P, et al: Reduced force generating capacity in myocytes from chronically ischemic, hibernating myocardium. Circ Res 2007; 100: 229–237.
- 57 Holley CT, Duffy CM, Butterick TA, et al: Expression of uncoupling protein-2 remains increased within hibernating myocardium despite successful coronary artery bypass grafting at 4 wk post-revascularization. J Surg Res 2014. 2014 Aug 8. pii: S0022-4804(14)00740-9.
- 58 Ventura-Clapier R, Garnier A, Veksler V: Transcriptional control of mitochondrial biogenesis: The central role of PGC-1alpha. Cardiovasc Res 2008; 79: 208–217.
- 59Heron M. Deaths: Leading causes for 2010. National vital statistics reports: From the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 2013;62:1–96.
- 60 Cabrera JA, Ziemba EA, Colbert R, et al: Uncoupling protein-2 expression and effects on mitochondrial membrane potential and oxidant stress in heart tissue. Transl Res 2012; 159: 383–390.
- 61 Bonow RO, Maurer G, Lee KL, et al: Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 2011; 364: 1617–1625.
- 62 Gnecchi M, Zhang Z, Ni A, et al: Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204–1219.
- 63 Arslan F, Lai RC, Smeets MB, et al: Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013; 10: 301–312.
- 64 Tan SS, Yin Y, Lee T, et al: Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane. J Extracell Vesicles 2013 Dec 23;2.
- 65 Kinnaird T, Stabile E, Burnett MS, et al: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109: 1543–1549.
- 66 Gnecchi M, He H, Noiseux N, et al: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20: 661–669.
- 67 Bolli R, Chugh AR, D'Amario D, et al: Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet 2011; 378: 1847–1857.
- 68 Heldman AW, DiFede DL, Fishman JE, et al: Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA 2014; 311: 62–73.
- 69 Mortensen SA: Perspectives on therapy of cardiovascular diseases with coenzyme Q10 (ubiquinone). Clin Invest 1993; 71: S116–S123.
- 70 Rauchova H, Drahota Z, Lenaz G: Function of coenzyme Q in the cell: Some biochemical and physiological properties. Physiol Res 1995; 44: 209–216.
- 71 Drose S, Brandt U: Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 2012; 748: 145–169.
- 72 Molyneux SL, Florkowski CM, George PM, et al: Coenzyme Q10: An independent predictor of mortality in chronic heart failure. J Am Coll Cardiol 2008; 52: 1435–1441.
- 73 Munkholm H, Hansen HH, Rasmussen K: Coenzyme Q10 treatment in serious heart failure. Biofactors 1999; 9: 285–289.
- 74 Morisco C, Trimarco B, Condorelli M: Effect of coenzyme Q10 therapy in patients with congestive heart failure: A long-term multicenter randomized study. Clin Invest 1993; 71: S134–S136.
- 75 Keogh A, Fenton S, Leslie C, et al: Randomised double-blind, placebo-controlled trial of coenzyme Q, therapy in class II and III systolic heart failure. Heart Lung Circ 2003; 12: 135–141.
- 76 Berman M, Erman A, Ben-Gal T, et al: Coenzyme Q10 in patients with end-stage heart failure awaiting cardiac transplantation: A randomized, placebo-controlled study. Clin Cardiol 2004; 27: 295–299.
- 77 Adarsh K, Kaur H, Mohan V: Coenzyme Q10 (CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM). Biofactors 2008; 32 145–149.
- 78 Dadabayev AR, Yin G, Latchoumycandane C, et al: Apolipoprotein A1 regulates coenzyme Q10 absorption, mitochondrial function, and infarct size in a mouse model of myocardial infarction. J Nutr 2014; 144: 1030–1036.
- 79 Ivanov AV, Gorodetskaya EA, Kalenikova EI, et al: Single intravenous injection of coenzyme Q10 protects the myocardium after irreversible ischemia. Bull Exp Biol Med 2013; 155: 771–774.
- 80 Verma DD, Hartner WC, Thakkar V, et al: Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 2007; 24: 2131–2137.