The Southwestern Indian Ocean as a potential marine evolutionary hotspot: perspectives from comparative phylogeography of reef brittle-stars
Corresponding Author
Thierry B. Hoareau
Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Pretoria, South Africa
Université de La Réunion, Laboratoire ECOMAR – FRE CNRS 3560, Labex CORAIL, CS 92003, 97744 Saint-Denis, La Réunion, France
Correspondence: Thierry B. Hoareau, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa.
E-mail: [email protected]
Search for more papers by this authorEmilie Boissin
Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Pretoria, South Africa
USR3278-CRIOBE-CNRS-EPHE, Laboratoire d'excellence ‘CORAIL’, Université de Perpignan-CBETM, 66860 Perpignan Cedex, France
Search for more papers by this authorGustav Paulay
Florida Museum of Natural History, Gainesville, FL, 32611-7800 USA
Search for more papers by this authorJ. Henrich Bruggemann
Université de La Réunion, Laboratoire ECOMAR – FRE CNRS 3560, Labex CORAIL, CS 92003, 97744 Saint-Denis, La Réunion, France
Search for more papers by this authorCorresponding Author
Thierry B. Hoareau
Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Pretoria, South Africa
Université de La Réunion, Laboratoire ECOMAR – FRE CNRS 3560, Labex CORAIL, CS 92003, 97744 Saint-Denis, La Réunion, France
Correspondence: Thierry B. Hoareau, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa.
E-mail: [email protected]
Search for more papers by this authorEmilie Boissin
Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Pretoria, South Africa
USR3278-CRIOBE-CNRS-EPHE, Laboratoire d'excellence ‘CORAIL’, Université de Perpignan-CBETM, 66860 Perpignan Cedex, France
Search for more papers by this authorGustav Paulay
Florida Museum of Natural History, Gainesville, FL, 32611-7800 USA
Search for more papers by this authorJ. Henrich Bruggemann
Université de La Réunion, Laboratoire ECOMAR – FRE CNRS 3560, Labex CORAIL, CS 92003, 97744 Saint-Denis, La Réunion, France
Search for more papers by this authorAbstract
Aim
The global biodiversity crisis requires the identification of regions with high evolutionary potential, i.e. evolutionary hotspots (evospots). We created an analytical framework based on comparative phylogeography and coalescent methods to assess the dynamics of diversification and population persistence in the reef ecosystem of a little-studied region: the Southwestern Indian Ocean (SWIO).
Location
Coral reefs of the SWIO, with comparative data from the Pacific Ocean.
Methods
We generated sequences of mitochondrial DNA (COI and 16S) for 10 widespread brittle-stars (345 specimens) from 21 localities (8 in the SWIO). We analysed them by combining comparative phylogeography approaches, coalescent-based methods, molecular clocks and the concept of evolutionarily significant units (ESUs) to draw conclusions about the drivers of biodiversity in the region.
Results
Cryptic diversity was prevalent, increasing lineage diversity within the 10 nominal species by 70% within the SWIO and by 200% across the Indo-West Pacific. All seven new SWIO lineages meet the criteria for ESUs and at least six are biological species. We detected likely intraregional diversifications dating to the Plio-Pleistocene, supporting the SWIO as a generator of biodiversity. Geographical restriction of ESUs, long coalescent times (> 80 ka) and old in situ diversification (> 1 Ma) point to the persistence of populations over multiple glacio-eustatic cycles. We provide data suggesting demographic expansion during sea-level high stands. Regional connectivity was lower, and cryptic differentiation higher in lecithotrophs than in planktotrophs.
Main conclusions
The analytical framework based on a biodiversity survey makes it possible to identify evospots by assessing the potential of a region to maintain and generate biodiversity and by evaluating the evolutionary processes and potential drivers at play.
Supporting Information
Filename | Description |
---|---|
jbi12155-sup-0001-AppendixS1.docxWord document, 74.8 KB | Appendix S1 Characteristics of the specimens used in the analyses including the nominal species name, ESU, haplotype, collection location, and GenBank IDs for both COI and 16S sequences. |
jbi12155-sup-0002-AppendixS2.docxWord document, 27.4 KB | Appendix S2 Summary statistics and demographic parameters of reef brittle-stars nominal species in the Southwestern Indian Ocean. |
jbi12155-sup-0003-AppendixS3.docxWord document, 362.6 KB | Appendix S3 Mismatch distributions for the eight species/ESUs displaying departure from mutation-drift equilibrium (Appendix S2). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Barber, P.H., Erdmann, M.V. & Palumbi, S.R. (2006) Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the Coral Triangle. Evolution, 60, 1825–1839.
- Bellwood, D.R. & Meyer, C.P. (2009) Searching for heat in a marine biodiversity hotspot. Journal of Biogeography, 36, 569–576.
- Boissin, E., Feral, J.P. & Chenuil, A. (2008a) Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea). Molecular Ecology, 17, 1732–1744.
- Boissin, E., Hoareau, T., Feral, J. & Chenuil, A. (2008b) Extreme selfing rates in the cosmopolitan brittle star species complex Amphipholis squamata: data from progeny-array and heterozygote deficiency. Marine Ecology Progress Series, 361, 151–159.
- Boissin, E., Stohr, S. & Chenuil, A. (2011) Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid? Molecular Ecology, 20, 4737–4755.
- Botsford, L.W., White, J.W., Coffroth, M.A., Paris, C.B., Planes, S., Shearer, T.L., Thorrold, S.R. & Jones, G.P. (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs, 28, 327–337.
- Briggs, J.C. (2005) Coral reefs: conserving the evolutionary sources. Biological Conservation, 126, 297–305.
- Byrne, M., Cisternas, P. & O'Hara, T. (2008) Brooding of pelagic-type larvae in Ophiopeza spinosa: reproduction and development in a tropical ophiodermatid brittlestar. Invertebrate Biology, 127, 98–107.
- Cherbonnier, G. & Guille, A. (1978) Echinodermes: Ophiurides. Faune de Madagascar, 48, 1–272.
- Cisternas, P.A. & Byrne, M. (2005) Evolution of abbreviated development in the ophiuroid Ophiarachnella gorgonia involves heterochronies and deletions. Canadian Journal of Zoology–Revue Canadienne de Zoologie, 83, 1067–1078.
- Clark, A.M. & Rowe, F.W.E. (1971) Monograph of shallow-water Indo-West Pacific echinoderms. Trustees of the British Museum (Natural History), London.
- Coyne, J.A. & Orr, H.A. (2004) Speciation. Sinauer Associates, Sunderland, MA.
- Crandall, E.D., Frey, M.A., Grosberg, R.K. & Barber, P.H. (2008) Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Molecular Ecology, 17, 611–626.
- Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
- Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185–1192.
- Emlet, R.B. (1990) Flow fields around ciliated larvae: effects of natural and artificial tethers. Marine Ecology Progress Series, 63, 211–225.
- Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.
- Gaither, M.R., Toonen, R.J., Robertson, D.R., Planes, S. & Bowen, B.W. (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). Journal of Biogeography, 37, 133–147.
- Goldson, A.J., Hughes, R.N. & Gliddon, C.J. (2001) Population genetic consequences of larval dispersal mode and hydrography: a case study with bryozoans. Marine Biology, 138, 1037–1042.
- Heled, J. & Drummond, A.J. (2008) Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8, 289.
- Heled, J. & Drummond, A.J. (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580.
- Hendler, G. (1975) Adaptational significance of patterns of ophiuroid development. American Zoologist, 15, 691–715.
- Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.
- Hickerson, M.J. & Meyer, C.P. (2008) Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach. BMC Evolutionary Biology, 8, 322.
- Ho, S.Y.W., Saarma, U., Barnett, R., Haile, J. & Shapiro, B. (2008) The effect of inappropriate calibration: three case studies in molecular ecology. PLoS ONE, 3, e1615.
- Hoareau, T.B. & Boissin, E. (2010) Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Molecular Ecology Resources, 10, 960–967.
- Hoareau, T.B., Boissin, E. & Berrebi, P. (2012) Evolutionary history of a widespread Indo-Pacific goby: the role of Pleistocene sea-level changes on demographic contraction/expansion dynamics. Molecular phylogenetics and evolution, 62, 566–72.
- Hubert, N., Meyer, C.P., Bruggemann, H.J., Guerin, F., Komeno, R.J.L., Espiau, B., Causse, R., Williams, J.T. & Planes, S. (2012) Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE, 7, e28987.
- Jablonski, D. (2008) Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution, 62, 715–739.
- Kelly, R.P. & Palumbi, S.R. (2010) Genetic structure among 50 species of the Northeastern Pacific rocky intertidal community. PLoS ONE, 5, e8594.
- Komatsu, M. & Shosaku, T. (1993) Development of the brittle star, Ophioplocus japonicus H.L. Clark, 1. Zoological Science, 10, 295–306.
- Lessios, H.A. (2008) The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annual Review of Ecology, Evolution, and Systematics, 39, 63–91.
- Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
- Lisiecki, L.E. & Raymo, M.E. (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.
- Lynch, J.D. (1989) The gauge of speciation: on the frequencies of modes of speciation. Speciation and its consequences (ed. by D. Otte and J.A. Endler), pp. 527–553. Sinauer, Sunderland, MA.
- Malay, M.C.D. & Paulay, G. (2010) Peripatric speciation drives diversification and distributional pattern of reef hermit crabs (Decapoda: Diogenidae: Calcinus). Evolution, 64, 634–662.
- Marko, P.B., Hoffman, J.M., Emme, S.A., McGovern, T.M., Keever, C.C. & Cox, L.N. (2010) The ‘Expansion–Contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change? Molecular Ecology, 19, 146–169.
- Mayr, E. (1954) Change of genetic environment and evolution. Evolution as a process (ed. by J. Huxley, A.C. Hardy and E.B. Ford), pp. 157–180. Allen and Unwin, London.
- McGovern, T.M., Keever, C.C., Saski, C.A., Hart, M.W. & Marko, P.B. (2010) Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Molecular Ecology, 19, 5043–60.
- Meyer, C.P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3, 2229–2238.
- Mladenov, P.V. (1985) Development and metamorphosis of the brittle star Ophiocoma pumila – evolutionary and ecological implications. Biological Bulletin, 168, 285–295.
- Moberg, F. & Folke, C. (1999) Ecological goods and services of coral reef ecosystems. Ecological Economics, 29, 215–233.
- Moritz, C. (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238–254.
- Morlon, H., Parsons, T.L. & Plotkin, J.B. (2011) Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences USA, 108, 16327–16332.
- Mortensen, T. (1938) Contributions to the study of the development and larval forms of echinoderms, IV. Det Kongelige Danske videnskabernes selskabs skrifter. Naturvidenskabelig og mathematisk afdeling. Hølst & Søn, Copenhagen.
- Muths, D., Tessier, E., Gouws, G., Craig, M., Mwale, M., Mwaluma, J., Mwandya, A. & Bourjea, J. (2011) Restricted dispersal of the reef fish Myripristis berndti at the scale of the SW Indian Ocean. Marine Ecology Progress Series, 443, 167–180.
- Myers, N. (1988) Threatened biotas: “hot spots” in tropical forests. The Environmentalist, 8, 187–208.
- Nixon, K.C. & Wheeler, Q.D. (1990) An amplification of the phylogenetic species concept. Cladistics, 6, 211–223.
- Norris, R.D. & Hull, P.M. (2012) The temporal dimension of marine speciation. Evolutionary Ecology, 26, 393–415.
- Obura, D. (2012) The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE, 7, e45013.
- O'Loughlin, P.M., Paulay, G., Davey, N. & Michonneau, F. (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep-Sea Research Part II–Topical Studies in Oceanography, 58, 264–275.
- Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. Molecular systematics (ed. by D. Hillis and C. Moritz), pp. 205–247. Sinauer Associates Inc., Sunderland, MA.
- Parker, J., Rambaut, A. & Pybus, O.G. (2008) Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infection Genetics and Evolution, 8, 239–246.
- Paulay, G. (1990) Effects of late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands. Paleobiology, 16, 415–434.
- Paulay, G. (1996) Dynamic clams: changes in the bivalve fauna of Pacific islands as a result of sea-level fluctuations. American Malacological Bulletin, 12, 45–57.
- Paulay, G. & Meyer, C. (2002) Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integrative and Comparative Biology, 42, 922–934.
- Paulay, G. & Meyer, C. (2006) Dispersal and divergence across the greatest ocean region: do larvae matter? Integrative and Comparative Biology, 46, 269–281.
- Pillans, B., Chappell, J. & Naish, T.R. (1998) A review of the Milankovitch climatic beat: template for Plio-Pleistocene sea-level changes and sequence stratigraphy. Sedimentary Geology, 122, 5–21.
- Provan, J. & Bennett, K.D. (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23, 564–571.
- Quenouille, B., Hubert, N., Bermingham, E. & Planes, S. (2011) Speciation in tropical seas: allopatry followed by range change. Molecular Phylogenetics and Evolution, 58, 546–552.
- Quental, T.B. & Marshall, C.R. (2010) Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology and Evolution, 25, 434–441.
- Reid, W.V. (1998) Biodiversity hotspots. Trends in Ecology and Evolution, 13, 275–280.
- Reznick, D.N. & Ricklefs, R.E. (2009) Darwin's bridge between microevolution and macroevolution. Nature, 457, 837–842.
- Richards, V.P., Thomas, J.D., Stanhope, M.J. & Shivji, M.S. (2007) Genetic connectivity in the Florida reef system: comparative phylogeography of commensal invertebrates with contrasting reproductive strategies. Molecular Ecology, 16, 139–157.
- Riegl, B., Bruckner, A., Coles, S.L., Renaud, P. & Dodge, R.E. (2009) Coral reefs. Annals of the New York Academy of Sciences, 1162, 136–186.
- Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., Vynne, C. & Werner, T.B. (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 295, 1280–1284.
- Samyn, Y. & Tallon, I. (2005) Zoogeography of the shallow-water holothuroids of the western Indian Ocean. Journal of Biogeography, 32, 1523–1538.
- Schott, F.A. & McCreary, J.P. (2001) The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51, 1–123.
- Selkoe, K.A. & Toonen, R.J. (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series, 436, 291–305.
- Selvakumaraswamy, P. & Byrne, M. (2004) Metamorphosis and developmental evolution in Ophionereis (Echinodermata: Ophiuroidea). Marine Biology, 145, 87–99.
- Stöhr, S. & O'Hara, T. (eds) (2013) World Ophiuroidea database. Available at: http://www.marinespecies.org/ophiuroidea (accessed on 7 February 2013).
- Stöhr, S., O'Hara, T.D. & Thuy, B. (2012) Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE, 7, e31940.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
- Vandergast, A.G., Bohonak, A.J., Hathaway, S.A., Boys, J. & Fisher, R.N. (2008) Are hotspots of evolutionary potential adequately protected in southern California? Biological Conservation, 141, 1648–1664.
- Visram, S., Yang, M.-C., Pillay, R.M., Said, S., Henriksson, O., Grahn, M. & Chen, C.A. (2010) Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean. Marine Biology, 157, 1475–1487.
- Vogler, C., Benzie, J., Barber, P.H., Erdmann, M.V., Ambariyanto, Sheppard, C., Tenggardjaja, K., Gerard, K. & Woerheide, G. (2012) Phylogeography of the Crown-of-Thorns Starfish in the Indian Ocean. PLoS ONE, 7, e43499.
- Voris, H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153–1167.
- Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E. & Labracherie, M. (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21, 295–305.
- Wafar, M., Venkataraman, K., Ingole, B., Khan, S.A. & LokaBharathi, P. (2011) State of knowledge of coastal and marine biodiversity of Indian Ocean countries. PLoS ONE, 6, e14613.
- Waples, R.S. (1991) Pacific salmon, Oncorhynchus spp., and the definition of species under the Endangered Species Act. Marine Fisheries Review, 53, 11–22.
- Ward, R.D., Holmes, B.H. & O'Hara, T.D. (2008) DNA barcoding discriminates echinoderm species. Molecular Ecology Resources, 8, 1202–1211.
- Young, C.M., Sewell, M.A., Tyler, P.A. & Metaxas, A. (1997) Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal. Biodiversity and Conservation, 6, 1507–1522.