Chemoprotective effect of the tetrahydrofuran lignan grandisin in the in-vivo rodent micronucleus assay
Corresponding Author
Marize C. Valadares
Laboratório de Farmacologia e Toxicologia Celular
Marize Campos Valadares, Faculdade de Farmácia – UFG, Praça Universitária esquina com 1a Avenida s/n, Setor Universitário, 74605-220, Goiânia, GO, Brazil. E-mail: [email protected]Search for more papers by this authorLuiz Marcos de Oliveira Júnior
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorFlávio S. de Carvalho
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorLorenna V.S. Andrade
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorAlexandre P. dos Santos
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorEric de Souza Gil
Laboratório de Análise Farmacêutica e Ambiental, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO
Search for more papers by this authorMassuo J. Kato
Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
Search for more papers by this authorCorresponding Author
Marize C. Valadares
Laboratório de Farmacologia e Toxicologia Celular
Marize Campos Valadares, Faculdade de Farmácia – UFG, Praça Universitária esquina com 1a Avenida s/n, Setor Universitário, 74605-220, Goiânia, GO, Brazil. E-mail: [email protected]Search for more papers by this authorLuiz Marcos de Oliveira Júnior
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorFlávio S. de Carvalho
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorLorenna V.S. Andrade
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorAlexandre P. dos Santos
Laboratório de Farmacologia e Toxicologia Celular
Search for more papers by this authorEric de Souza Gil
Laboratório de Análise Farmacêutica e Ambiental, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO
Search for more papers by this authorMassuo J. Kato
Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
Search for more papers by this authorAbstract
Objectives The chemoprotective effect of the tetrahydrofuran lignan grandisin against DNA damage induced by cyclophosphamide (200 mg/kg) has been evaluated using the in vitro rodent micronucleus assay.
Methods The effects of a daily oral administration of grandisin (2, 4, or 8 mg/kg) for five days before exposure to cyclophosphamide on the frequency of micronucleus in the bone marrow of normal mice exposed and unexposed to cyclophosphamide were investigated (n = 5 per group). Electrochemical measurements were applied to investigate whether the antimutagenic effects of grandisin could be, at least in part, a consequence of its or its metabolite's antioxidant properties.
Key findings Grandisin did not show mutagenic effects on the bone marrow cells of exposed mice. On the other hand, the oral administration of grandisin (2, 4, or 8 mg/kg) per day reduced dose-dependently the frequency of micronucleus, induced by cyclophosphamide, in all groups studied. Cyclic voltammograms showed two peaks for a grandisin metabolite, which were absent for grandisin.
Conclusions Under the conditions tested herein, this study has shown that mice treated with grandisin presented, in a dose-dependent manner, a protective effect against cyclophosphamide-induced mutagenicity. This effect could be, at least in part, associated to grandisin bioactivation. These data open new perspectives for further investigation into the toxicology and applied pharmacology of grandisin.
References
- 1 Holland N et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res 2008; 659: 93–108.
- 2 Duthie SJ. Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol Nutr Food Res 2007; 56: 665–674.
- 3 Chin Y-W et al. Lignans and other constituents of the fruits of Euterpe oleracea (Açai) with antioxidant and cytoprotective activities. J Agric Food Chem 2008; 56: 7759–7764.
- 4 Fiorentino A et al. Potential food additives from Carex distachya roots: identification and in vitro antioxidant properties. J Agric Food Chem 2008; 56: 8218–8225.
- 5 Marino SD et al. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity. Molecules 2008; 13: 1219–1229.
- 6 Ono M et al. DPPH radical-scavenging effect on some constituents from the aerial parts of Lippia triphylla. J Nat Med 2008; 62: 101–106.
- 7 Saladino R et al. Advances and challenges in the synthesis of highly oxidised natural phenols with antiviral, antioxidant and cytotoxic activities. Curr Med Chem 2008; 15: 1500–1519.
- 8 Rezende KR et al. Antioxidant activity of aryltetralone lignans and derivatives from Virola sebifera (Aubl.). Nat Prod Res 2005; 19: 661–666.
- 9 Lopes NP et al. Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi. Planta Med 1998; 64: 667–668.
- 10 Lopes NP et al. Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiãpi Amazon Indians. J Ethnopharmacol 1999; 67: 13–19.
- 11 Martins RC et al. Phenylpropanoids and tetrahydrofuran lignans from Piper solmsianum. Phytochemistry 2000; 55: 843–846.
- 12 Martins RC et al. Trypanocidal tetrahydrofuran lignans from inflorescences of Piper solmsianum. Phytochemistry 2003; 55: 667–670.
- 13 Bernardes LS et al. Synthesis and trypanocidal activity of 1,4-bis-(3,4,5-trimethoxy-phenyl)-1,4-butanediol and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol. Bioorg Med Chem 2006; 14: 7075–7082.
- 14 Cabral MM et al. Larvicidal activity of grandisin against Aedes aegypti. J Am Mosq Control Assoc 2009; 25: 103–105.
- 15 Nogueira CD et al. Disruption of Chrysomya megacephala growth caused by lignan grandisin. J Med Entomol 2009; 46: 281–283.
- 16 Carvalho AA et al. Antinociceptive and antiinflammatory activities of grandisin extracted from Virola surinamensis. Phytother Res 2010; 24: 113–118.
- 17 Valadares MC et al. Cytotoxicity and antiangiogenic activity of grandisin. J Pharm Pharmacol 2009; 61: 1709–1714.
- 18 Figueiredo RC. Effects of grandisin on hematopoietic system in mice. Ribeirão Preto, São Paulo, Brazil: Universidade de São Paulo, 2006 (dissertation).
- 19 Smith RV, Rosazza JP. Microbial models for drug metabolism. Adv Appl Microbiol 1979; 25: 169–208.
- 20 Azerad R. Microbial models for drug metabolism. Adv Biochem Eng Biotechnol 1999; 63: 169–218.
- 21 Cunha CRM. Bioconversão: avaliação da capacidade de fungos filamentosos em metabolizar os substratos grandisina, naringina e naringenina. Goiânia, Goiás, Brazil: Universidade Federal de Goiás, 2008 (dissertation).
- 22 Asha S, Vidyavathi M. Cunninghamella – a microbial model for drug metabolism studies – a review. Biotechnol Adv 2009; 27: 16–29.
- 23 Barbosa-Filho JM et al. Neolignans from Licaria aurea. Phytochemistry 1989; 28: 2209–2221.
- 24 ED Olfert et al. eds. Guide to the Care and Use of Experimental Animals, Vol. 1, 2nd edn. Ottawa: Canadian Council on Animal Care, 1993: 212.
- 25 MacGregor JT et al. Guidelines for the conduct of micronucleus assay in mammalian bone marrow erythrocytes. Mutat Res 1987; 189: 103–112.
- 26 Pereira CAB. Teste estatístico para comparar proporções em problemas de citogenética. In: MN Rabello-Gay et al. eds. Mutagênese, Teratogênese e Carcinomatous, Métodos e Critérios de Avaliação. São Paulo, FCA: 113–121.
- 27 Manoharan K, Banerjee MR. β-Carotene reduces sister chromatid exchange induce chemical carcinogens in mouse mammary cells in organ culture. Cell Biol Int Rep 1985; 9: 783–789.
- 28 Valadares MC et al. Protective effects of 4-nerolidylcatechol against genotoxicity induced by cyclophosphamide. Food Chem Toxicol 2007; 45: 1975–1978.
- 29 Kouzi SA, McChesney JD. Microbial models of mammalian metabolism: fungal metabolism of the diterpene sclareol by Cunninghamella species. J Nat Prod 1991; 54: 483–490.
- 30 Gordaliza M et al. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 2004; 44: 441–459.
- 31 Yang CS et al. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 2001; 21: 381–406.
- 32 Ramos CS et al. Metabolism of (–)-grandisin from Piper solmsianum in Coleoptera and Lepidoptera species. Phytochemistry 2008; 69: 2157–2161.