Dietary polyphenols can modulate the intestinal inflammatory response
Béatrice Romier
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
Search for more papers by this authorYves-Jacques Schneider
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
Search for more papers by this authorYvan Larondelle
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
Search for more papers by this authorCorresponding Author
Alexandrine During
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
A During, Laboratoire de Biochimie Cellulaire, Croix du Sud, 5, Université catholique de Louvain, B 1348 Louvain-la-Neuve, Belgium. E-mail: [email protected], Phone: +32(0)-10-47-30-39, Fax: +32(0)-10-47-48-95.Search for more papers by this authorBéatrice Romier
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
Search for more papers by this authorYves-Jacques Schneider
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
Search for more papers by this authorYvan Larondelle
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
Search for more papers by this authorCorresponding Author
Alexandrine During
Biochimie cellulaire, nutritionnelle & toxicologique, Institut des Sciences de la Vie & UCL, Académie universitaire Louvain, Louvain-la-Neuve, Belgium
A During, Laboratoire de Biochimie Cellulaire, Croix du Sud, 5, Université catholique de Louvain, B 1348 Louvain-la-Neuve, Belgium. E-mail: [email protected], Phone: +32(0)-10-47-30-39, Fax: +32(0)-10-47-48-95.Search for more papers by this authorAbstract
Inflammatory bowel diseases (IBD) arise from multiple causes, including environmental factors, gut microflora, immunity, and genetic predispositions. In the course of IBD, immune homeostasis and intestinal mucosa barrier integrity are impaired. Among natural preventive treatments that have been identified to date, polyphenols appear as promising candidates. They have been shown to protect against several diseases, including cardiovascular diseases and cancers, and they have anti-inflammatory properties in non-intestinal models. This paper will review the literature that has described to date some effects of polyphenols on intestinal inflammation. Studies, conducted using in vivo and in vitro models, provide evidence that pure polyphenolic compounds and natural polyphenolic plant extracts can modulate intestinal inflammation.
REFERENCES
- 1 Fiocchi C. More answers and more questions in inflammatory bowel disease. Curr Opin Gastroenterol. 2003; 19: 325–326.
- 2 Pohl C, Hombach A, Kruis W. Chronic inflammatory bowel disease and cancer. Hepatogastroenterology. 2000; 47: 57–70.
- 3 Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J Gastroenterol. 2006; 12: 6102–6108.
- 4 Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998; 115: 182–205.
- 5 Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF. A population-based case control study of potential risk factors for IBD. Am J Gastroenterol. 2006; 101: 993–1002.
- 6 Sakamoto N, Kono S, Wakai K, et al. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis. 2005; 11: 154–163.
- 7 Lakatos PL, Fischer S, Lakatos L, Gal I, Papp J. Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take “toll”? World J Gastroenterol. 2006; 12: 1829–1841.
- 8 Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003; 278: 8869–8872.
- 9 Peltekova VD, Wintle RF, Rubin LA, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004; 36: 471–475.
- 10 Stoll M, Corneliussen B, Costello CM, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004; 36: 476–480.
- 11 Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006; 314: 1461–1463.
- 12 Brown SJ, Mayer L. The immune response in inflammatory bowel disease. Am J Gastroenterol. 2007; 102: 2058–2069.
- 13 Ferguson LR, Shelling AN, Browning BL, Huebner C, Petermann I. Genes, diet and inflammatory bowel disease. Mutat Res. 2007; 622: 70–83.
- 14 Taurog JD, Richardson JA, Croft JT, et al. The germ-free state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994; 180: 2359–2364.
- 15 Kanauchi O, Serizawa I, Araki Y, et al. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J Gastroenterol. 2003; 38: 134–141.
- 16 Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008; 298: 463–472
- 17 Hibi T, Ogata H. Novel pathophysiological concepts of inflammatory bowel disease. J Gastroenterol. 2006; 41: 10–16.
- 18 Barrie A, Plevy S. Treatment of immune-mediated extraintestinal manifestations of inflammatory bowel disease with infliximab. Gastroenterol Clin North Am. 2006; 35: 883–893.
- 19 Rennick DM, Fort MM, Davidson NJ. Studies with IL-10-/- mice: an overview. J Leukoc Biol. 1997; 61: 389–396.
- 20 Daig R, Andus T, Aschenbrenner E, Falk W, Scholmerich J, Gross V. Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease. Gut. 1996; 38: 216–222.
- 21 Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003; 52: 65–70.
- 22 Stallmach A, Giese T, Schmidt C, Ludwig B, Mueller-Molaian I, Meuer SC. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn's disease. Int J Colorectal Dis. 2004; 19: 308–315.
- 23 Fiocchi C. Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions. Am J Physiol. 1997; 273: G769–G775.
- 24 Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006; 2: 203–212.
- 25 De Santa Barbara P, Van Den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003; 60: 1322–1332.
- 26 Newberry RD, Lorenz RG. Organizing a mucosal defense. Immunol Rev. 2005; 206: 6–21.
- 27 Ouellette AJ, Bevins CL. Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis. 2001; 7: 43–50.
- 28 Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 1997; 277: 949–952.
- 29 Kucharzik T, Lugering N, Rautenberg K, et al. Role of M cells in intestinal barrier function. Ann N Y Acad Sci. 2000; 915: 171–183.
- 30 Magalhaes JG, Tattoli I, Girardin SE. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol. 2007; 19: 106–115.
- 31 Takeda K, Akira S. Toll receptors and pathogen resistance. Cell Microbiol. 2003; 5: 143–153.
- 32 Werner T, Haller D. Intestinal epithelial cell signalling and chronic inflammation: from the proteome to specific molecular mechanisms. Mutat Res. 2007; 622: 42–57.
- 33 Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001; 2: 1004–1009.
- 34 Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest. 1997; 100: 6–10.
- 35 Hershberg RM, Mayer LF. Antigen processing and presentation by intestinal epithelial cells – polarity and complexity. Immunol Today. 2000; 21: 123–128.
- 36 Shao L, Kamalu O, Mayer L. Non-classical MHC class I molecules on intestinal epithelial cells: mediators of mucosal crosstalk. Immunol Rev. 2005; 206: 160–176.
- 37 Dahan S, Roth-Walter F, Arnaboldi P, Agarwal S, Mayer L. Epithelia: lymphocyte interactions in the gut. Immunol Rev. 2007; 215: 243–253.
- 38 Reinecker HC, Podolsky DK. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Natl Acad Sci USA. 1995; 92: 8353–8357.
- 39 Neuman MG. Immune dysfunction in inflammatory bowel disease. Transl Res. 2007; 149: 173–186.
- 40 Ravi A, Garg P, Sitaraman SV. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis. 2007; 13: 97–107.
- 41 Cobrin GM, Abreu MT. Defects in mucosal immunity leading to Crohn's disease. Immunol Rev. 2005; 206: 277–295.
- 42 Ogura Y, Lala S, Xin W, et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut. 2003; 52: 1591–1597.
- 43 Keshav S. Paneth cells: leukocyte-like mediators of innate immunity in the intestine. J Leukoc Biol. 2006; 80: 500–508.
- 44 Barnes PJ. Nuclear factor-kappa B. Int J Biochem Cell Biol. 1997; 29: 867–870.
- 45 Waetzig GH, Schreiber S. Review article: mitogen-activated protein kinases in chronic intestinal inflammation – targeting ancient pathways to treat modern diseases. Aliment Pharmacol Ther. 2003; 18: 17–32.
- 46 Jobin C, Haskill S, Mayer L, Panja A, Sartor RB. Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells. J Immunol. 1997; 158: 226–234.
- 47 Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci. 2005; 30: 43–52.
- 48 Campbell KJ, Perkins ND. Regulation of NF-kappaB function. Biochem Soc Symp. 2006; 73: 165–180.
- 49 Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998; 74: 49–139.
- 50 Hommes DW, Peppelenbosch MP, Van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut. 2003; 52: 144–151.
- 51 Egerton M, Fitzpatrick DR, Catling AD, Kelso A. Differential activation of T cell cytokine production by the extracellular signal-regulated kinase (ERK) signaling pathway. Eur J Immunol. 1996; 26: 2279–2285.
- 52 Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development. Curr Opin Cell Biol. 1998; 10: 205–219.
- 53 Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta. 2007; 1773: 1341–1348.
- 54 Roy PK, Rashid F, Bragg J, Ibdah JA. Role of the JNK signal transduction pathway in inflammatory bowel disease. World J Gastroenterol. 2008; 14: 200–202.
- 55 Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000; 12: 1–13.
- 56 Bergmann M, Hart L, Lindsay M, Barnes PJ, Newton R. IkappaBalpha degradation and nuclear factor-kappaB DNA binding are insufficient for interleukin-1beta and tumor necrosis factor-alpha-induced kappaB-dependent transcription. Requirement for an additional activation pathway. J Biol Chem. 1998; 273: 6607–6610.
- 57 Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007; 1773: 1358–1375.
- 58 Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol. 2002; 168: 5342–5351.
- 59 Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79: 727–747.
- 60 Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998; 56: 317–333.
- 61 Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000; 130(Suppl): S2073–S2085.
- 62 Nemeth K, Plumb GW, Berrin JG, et al. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr. 2003; 42: 29–42.
- 63 Henry-Vitrac C, Desmouliere A, Girard D, Merillon JM, Krisa S. Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. Eur J Nutr. 2006; 45: 376–382.
- 64 Stevenson DE, Hurst RD. Polyphenolic phytochemicals – just antioxidants or much more? Cell Mol Life Sci. 2007; 64: 2900–2916.
- 65 Calixto JB, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor kappa B (NF-kappaB). Planta Med. 2003; 69: 973–983.
- 66 Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 2004; 70: 93–103.
- 67 Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol. 2006; 72: 1439–1452.
- 68 Yoon JH, Baek SJ. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J. 2005; 46: 585–596.
- 69 Nam NH. Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem. 2006; 6: 945–951.
- 70 Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007; 8: 950–988.
- 71 Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R. Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanita. 2007; 43: 394–405.
- 72 Dryden GW, Song M, McClain C. Polyphenols and gastrointestinal diseases. Curr Opin Gastroenterol. 2006; 22: 165–170.
- 73 Shapiro H, Singer P, Halpern Z, Bruck R. Polyphenols in the treatment of inflammatory bowel disease and acute pancreatitis. Gut. 2007; 56: 426–435.
- 74 Ruiz PA, Braune A, Holzlwimmer G, Quintanilla-Fend L, Haller D. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr. 2007; 137: 1208–1215.
- 75 Kim H, Kong H, Choi B, et al. Metabolic and pharmacological properties of rutin, a dietary quercetin glycoside, for treatment of inflammatory bowel disease. Pharm Res. 2005; 22: 1499–1509.
- 76 Ruiz PA, Haller D. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr. 2006; 136: 664–671.
- 77 Romier B, Van De Walle J, During A, Larondelle Y, Schneider YJ. Modulation of signalling nuclear factor-kB activation pathway by polyphenols in human intestinal caco-2 cells. Br J Nutr. 2008; 100: 542–551.
- 78 Navarro-Peran E, Cabezas-Herrera J, Sanchez-Del-Campo L, Garcia-Canovas F, Rodriguez-Lopez JN. The anti-inflammatory and anti-cancer properties of epigallocatechin-3-gallate are mediated by folate cycle disruption, adenosine release and NF-kappaB suppression. Inflamm Res. 2008; 57: 472–478.
- 79 O'Leary KA, De Pascual-Tereasa S, Needs PW, Bao YP, O'Brien NM, Williamson G. Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat Res. 2004; 551: 245–254.
- 80 Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology. 2005; 115: 375–387.
- 81 Paradkar PN, Blum PS, Berhow MA, Baumann H, Kuo SM. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Lett. 2004; 215: 21–28.
- 82 Ishiguro K, Ando T, Maeda O, et al. Paeonol attenuates TNBS-induced colitis by inhibiting NF-kappaB and STAT1 transactivation. Toxicol Appl Pharmacol. 2006; 217: 35–42.
- 83 Potoka DA, Nadler EP, Zhou X, Zhang XR, Upperman JS, Ford HR. Inhibition of NF-kappaB by IkappaB prevents cytokine-induced NO production and promotes enterocyte apoptosis in vitro. Shock. 2000; 14: 366–373.
- 84 Liu Y, Merlin D, Burst SL, Pochet M, Madara JL, Parkos CA. The role of CD47 in neutrophil transmigration. Increased rate of migration correlates with increased cell surface expression of CD47. J Biol Chem. 2001; 276: 40156–40166.
- 85 Yang F, Oz HS, Barve S, De Villiers WJ, McClain CJ, Varilek GW. The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol. 2001; 60: 528–533.
- 86 Lee SH, Sohn DH, Jin XY, Kim SW, Choi SC, Seo GS. 2′,4′,6′-tris(methoxymethoxy) chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-alpha-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways. Biochem Pharmacol. 2007; 74: 870–880.
- 87 Lee SH, Seo GS, Jin XY, Ko G, Sohn DH. Butein blocks tumor necrosis factor alpha-induced interleukin 8 and matrix metalloproteinase 7 production by inhibiting p38 kinase and osteopontin mediated signaling events in HT-29 cells. Life Sci. 2007; 81: 1535–1543.
- 88 Porath D, Riegger C, Drewe J, Schwager J. Epigallocatechin-3-gallate impairs chemokine production in human colon epithelial cell lines. J Pharmacol Exp Ther. 2005; 315: 1172–1180.
- 89 Hong T, Jin GB, Cho S, Cyong JC. Evaluation of the anti-inflammatory effect of baicalein on dextran sulfate sodium-induced colitis in mice. Planta Med. 2002; 68: 268–271.
- 90 Kwon KH, Murakami A, Tanaka T, Ohigashi H. Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochem Pharmacol. 2005; 69: 395–406.
- 91 Comalada M, Camuesco D, Sierra S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur J Immunol. 2005; 35: 584–592.
- 92 Sanchez de Medina F, Galvez J, Romero JA, Zarzuelo A. Effect of quercitrin on acute and chronic experimental colitis in the rat. J Pharmacol Exp Ther. 1996; 278: 771–779.
- 93 Sanchez de Medina F, Vera B, Galvez J, Zarzuelo A. Effect of quercitrin on the early stages of hapten induced colonic inflammation in the rat. Life Sci. 2002; 70: 3097–3108.
- 94 Camuesco D, Comalada M, Rodriguez-Cabezas ME, et al. The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol. 2004; 143: 908–918.
- 95 Camuesco D, Comalada M, Concha A, et al. Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin Nutr. 2006; 25: 466–476.
- 96 Galvez J, Cruz T, Crespo E, et al. Rutoside as mucosal protective in acetic acid-induced rat colitis. Planta Med. 1997; 63: 409–414.
- 97 Cruz T, Galvez J, Ocete MA, Crespo ME, Sanchez de Medina LHF, Zarzuelo A. Oral administration of rutoside can ameliorate inflammatory bowel disease in rats. Life Sci. 1998; 62: 687–695.
- 98 Cruz T, Galvez J, Crespo E, Ocete MA, Zarzuelo A. Effects of silymarin on the acute stage of the trinitrobenzenesulphonic acid model of rat colitis. Planta Med. 2001; 67: 94–96.
- 99 Kim YS, Son M, Ko JI, et al. Effect of DA-6034, a derivative of flavonoid, on experimental animal models of inflammatory bowel disease. Arch Pharm Res. 1999; 22: 354–360.
- 100 Crespo ME, Galvez J, Cruz T, Ocete MA, Zarzuelo A. Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Med. 1999; 65: 651–653.
- 101 Villegas I, Alarcon de la Lastra C, Orjales A, La Casa C. A new flavonoid derivative, dosmalfate, attenuates the development of dextran sulphate sodium-induced colitis in mice. Int Immunopharmacol. 2003; 3: 1731–1741.
- 102 Villegas I, La Casa C, Orjales A, Alarcon de la Lastra C. Effects of dosmalfate, a new cytoprotective agent, on acute and chronic trinitrobenzene sulphonic acid-induced colitis in rats. Eur J Pharmacol. 2003; 460: 209–218.
- 103 Galvez J, Coelho G, Crespo ME, et al. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol Ther. 2001; 15: 2027–2039.
- 104 Ocete MA, Galvez J, Crespo ME, et al. Effects of morin on an experimental model of acute colitis in rats. Pharmacology. 1998; 57: 261–270.
- 105 Sadowska-Krowicka H, Mannick EE, Oliver PD, et al. Genistein and gut inflammation: role of nitric oxide. Proc Soc Exp Biol Med. 1998; 217: 351–357.
- 106 Lim BO. Efficacy of wogonin in the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci Biotechnol Biochem. 2004; 68: 2505–2511.
- 107 Sato K, Kanazawa A, Ota N, Nakamura T, Fujimoto K. Dietary supplementation of catechins and alpha-tocopherol accelerates the healing of trinitrobenzene sulfonic acid-induced ulcerative colitis in rats. J Nutr Sci Vitaminol (Tokyo). 1998; 44: 769–778.
- 108 Mochizuki M, Hasegawa N. Protective effect of (-)-epigallocatechin gallate on acute experimental colitis. J Health Sci. 2005; 51: 362–364.
- 109 Ukil A, Maity S, Das PK. Protection from experimental colitis by theaflavin-3,3′-digallate correlates with inhibition of IKK and NF-kappaB activation. Br J Pharmacol. 2006; 149: 121–131.
- 110 Maity S, Ukil A, Karmakar S, et al. Thearubigin, the major polyphenol of black tea, ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. Eur J Pharmacol. 2003; 470: 103–112.
- 111 Mochizuki M, Hasegawa N. Therapeutic efficacy of pycnogenol in experimental inflammatory bowel diseases. Phytother Res. 2004; 18: 1027–1028.
- 112 Sugimoto K, Hanai H, Tozawa K, et al. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology. 2002; 123: 1912–1922.
- 113 Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol. 2003; 139: 209–218.
- 114 Salh B, Assi K, Templeman V, et al. Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol. 2003; 285: G235–243.
- 115 Jian YT, Mai GF, Wang JD, Zhang YL, Luo RC, Fang YX. Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol. 2005; 11: 1747–1752.
- 116 Camacho-Barquero L, Villegas I, Sanchez-Calvo JM, et al. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol. 2007; 7: 333–342.
- 117 Deguchi Y, Andoh A, Inatomi O, et al. Curcumin prevents the development of dextran sulfate sodium (DSS)-induced experimental colitis. Dig Dis Sci. 2007; 52: 2993–2998.
- 118 Luceri C, Guglielmi F, Lodovici M, Giannini L, Messerini L, Dolara P. Plant phenolic 4-coumaric acid protects against intestinal inflammation in rats. Scand J Gastroenterol. 2004; 39: 1128–1133.
- 119 Di Stasi LC, Camuesco D, Nieto A, Vilegas W, Zarzuelo A, Galvez J. Intestinal anti-inflammatory activity of paepalantine, an isocoumarin isolated from the capitula of Paepalanthus bromelioides, in the trinitrobenzenesulphonic acid model of rat colitis. Planta Med. 2004; 70: 315–320.
- 120 Martin AR, Villegas I, La Casa C, De La Lastra CA. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol. 2004; 67: 1399–1410.
- 121 Martin AR, Villegas I, Sanchez-Hidalgo M, De La Lastra CA. The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br J Pharmacol. 2006; 147: 873–885.
- 122 Kim YH, Kwon HS, Kim DH, et al. Piceatannol, a stilbene present in grapes, attenuates dextran sulfate sodium-induced colitis. Int Immunopharmacol. 2008; 8: 1695–1702.
- 123 Kwon HS, Oh SM, Kim JK. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis. Clin Exp Immunol. 2008; 151: 165–173.
- 124 Hanai H, Iida T, Takeuchi K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006; 4: 1502–1506.
- 125 Luchini AC, Rodrigues-Orsi P, Cestari SH, et al. Intestinal anti-inflammatory activity of coumarin and 4-hydroxycoumarin in the trinitrobenzenesulphonic acid model of rat colitis. Biol Pharm Bull. 2008; 31: 1343–1350.
- 126 Tedeschi E, Menegazzi M, Yao Y, Suzuki H, Forstermann U, Kleinert H. Green tea inhibits human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1alpha activation. Mol Pharmacol. 2004; 65: 111–120.
- 127 Netsch MI, Gutmann H, Aydogan C, Drewe J. Green tea extract induces interleukin-8 (IL-8) mRNA and protein expression but specifically inhibits IL-8 secretion in caco-2 cells. Planta Med. 2006; 72: 697–702.
- 128 Varilek GW, Yang F, Lee EY, et al. Green tea polyphenol extract attenuates inflammation in interleukin-2-deficient mice, a model of autoimmunity. J Nutr. 2001; 131: 2034–2039.
- 129 Mazzon E, Muia C, Paola RD, et al. Green tea polyphenol extract attenuates colon injury induced by experimental colitis. Free Radic Res. 2005; 39: 1017–1025.
- 130 Oz HS, Chen TS, McClain CJ, De Villiers WJ. Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem. 2005; 16: 297–304.
- 131 Wessner B, Strasser EM, Koitz N, Schmuckenschlager C, Unger-Manhart N, Roth E. Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice. J Nutr. 2007; 137: 634–640.
- 132 Kim JS, Narula AS, Jobin C. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells. Clin Exp Immunol. 2005; 141: 288–297.
- 133 Romier-Crouzet B, Van de Walle J, During A, et al. Inhibition of inflammatory mediators by polyphenolic plant extracts in human intestinal Caco-2 cells. Food Chem Toxicol. 2009; 47: 1221–1230.
- 134 Burnett BP, Jia Q, Zhao Y, Levy RM. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food. 2007; 10: 442–451.
- 135 Galvez J, De Souza Gracioso J, Camuesco D, Vilegas W, Monteiro Souza Brito AR, Zarzuelo A. Intestinal antiinflammatory activity of a lyophilized infusion of Turnera ulmifolia in TNBS rat colitis. Fitoterapia. 2006; 77: 515–520.
- 136 Di Paola R, Mazzon E, Muia C, et al. Protective effect of Hypericum perforatum in zymosan-induced multiple organ dysfunction syndrome: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. Nitric Oxide. 2007; 16: 118–130.
- 137 Canali R, Vignolini F, Nobili F, Mengheri E. Reduction of oxidative stress and cytokine-induced neutrophil chemoattractant (CINC) expression by red wine polyphenols in zinc deficiency induced intestinal damage of rat. Free Radic Biol Med. 2000; 28: 1661–1670.
- 138 Ogawa Y, Kanatsu K, Iino T, et al. Protection against dextran sulfate sodium-induced colitis by microspheres of ellagic acid in rats. Life Sci. 2002; 71: 827–839.