Corrosion resistance and biocompatibility of a new porous surface for titanium implants
Michael Simon
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorChristelle Lagneau
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorJosé Moreno
Universidad Politecnica Valencia, Departamento de Ingenieria Mecanica, Valencia, Spain
Search for more papers by this authorMichele Lissac
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorFrancis Dalard
LEPMI, Polytechnic Institut of Grenoble, UMR 5631, INPG-CNRS, Saint Martin D'hères Cedex, France
Search for more papers by this authorBrigitte Grosgogeat
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorMichael Simon
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorChristelle Lagneau
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorJosé Moreno
Universidad Politecnica Valencia, Departamento de Ingenieria Mecanica, Valencia, Spain
Search for more papers by this authorMichele Lissac
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorFrancis Dalard
LEPMI, Polytechnic Institut of Grenoble, UMR 5631, INPG-CNRS, Saint Martin D'hères Cedex, France
Search for more papers by this authorBrigitte Grosgogeat
LEIBO, University Lyon 1, Faculté d'Odontologie, Rue Guillaume Paradin, Lyon Cedex 08, France
Search for more papers by this authorAbstract
Alterations of the commercially pure titanium (cpTi) surface may be undertaken to improve its biological properties. The aim of this study was to investigate the biocompatibility of cpTi when submitted to a new, porous titanium, surface treatment (porous Ti). Five types of surface treatments, namely sintered microspheres porous titanium (porous Ti), titanium plasma spray (TPS), hydroxyapatite (HA), sandblasted and acid etched (SBAE), and resorbable blast medium, sandblasted with hydroxyapatite (RBM) were made. In the experimental methods, the corrosion potentials were measured over time, and then a linear sweep voltammetric analysis measured the polarization resistances and corrosion currents. For biocompatibility evaluation, MG63 osteoblast-like cells were used. Cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity were evaluated after 2 h, and after 2, 4 and 7 d. Porous Ti and SBAE showed a better corrosion resistance, with a weak corrosion current and a high polarization resistance, than the other surfaces. Cell attachment, cell morphology, cell proliferation, and ALP synthesis were influenced by the surface treatments, with a significant increase observed of the activity of osteoblast cells on the porous coating (porous Ti). Based on these results, it is suggested that the porous Ti surface has a significantly better biocompatibility than the other surface treatments and an excellent electrochemical performance.
References
- 1 Williams DF. A model for biocompatibility and its evaluation. J Biomed Eng 1986; 11: 185 – 1991.
- 2 Fathi MH, Salehi M, Saatchi A, Mortazavi V, Moosavi SB. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dent Mater 2003; 19: 188 – 198.
- 3 Locci P, Lilli C, Marinucci L, Calvitti M, Belcastro S, Bellocchio S, Staffolani N, Guerra M, Becchetti E. In vitro cytotoxic effects of orthodontic appliances. J Biomed Mater Res 2003; 53: 560 – 567.
- 4
Carlsson L,
Rostlund T,
Albretsson B,
Albretsson T,
Branemark PI.
Osseointegration of titanium implants.
Acta Orthop Scand
1986; 57: 385
–
289.
10.3109/17453678608994393 Google Scholar
- 5 Castellani R, De Ruijter A, Renggli H, Jansen J. Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implants Res 1999; 10: 369 – 378.
- 6 Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y. Hemocompatibility of titanium oxide films. Biomaterials 2003; 24: 2177 – 2187.
- 7 Szmukler-Moncler S, Testori T, Bernard JP. Etched implants: a comparative surface analysis of four implant systems. J Biomed Mater Res 2004; 69B: 46 – 57.
- 8 Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 2002; 60: 529 – 540.
- 9
Kilpadi DV,
Raikar GN,
Liu J,
Lemons JE,
Vohra Y,
Gregory JC.
Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses.
Biomed Mater Res
1998; 40: 646
–
659.
10.1002/(SICI)1097-4636(19980615)40:4<646::AID-JBM17>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 10 Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004; 25: 2867 – 2875.
- 11 Kim HW, Koh YHK, Li LH, Lee S, Kim HY. Hydroxyapatite coating on titanium with titania buffer layer processed by sol-gel method. Biomaterials 2004; 25: 2533 – 2538.
- 12 Mustafa K, Oden A, Wenneberg A, Hultenby K, Arvidson K. The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts. Biomaterials 2005; 26: 373 – 381.
- 13 Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials 2004; 25: 625 – 631.
- 14 Keller JC, Schneider GB, Stanford CM, Kellogg B. Effects of implant microtopography on osteoblast cell attachment. Implant Dent 2003; 12: 175 – 181.
- 15 Montanaro L, Arciola CR, Campoccia D, Cervellati M. In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys. Biomaterials 2002; 23: 3651 – 3659.
- 16 Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 2003; 24: 2673 – 2683.
- 17 ISO 4288. Geometrical Product Specifications (GPS) – Surface texture: profile method – rules and procedures for the assessment of surface texture. ISO, Geneva: Switzerland, 1996.
- 18 Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content on the corrosion resistances of titanium and its alloys. Biomaterials 2002; 23: 1995 – 2002.
- 19 ISO 10271. Dental metallic materials – corrosion test methods. ISO, Geneva: Switzerland, 2001.
- 20 Kue R, Sohrabi A, Nagle D, Frondoza C, Hungerford HD. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Biomaterials 1999; 20: 1195 – 1201.
- 21 Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998; 19: 2219 – 2232.
- 22 Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 2004; 25: 2695 – 2711.
- 23 Mossman T. Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55 – 63.
- 24 Bradford M. A rapid and sensitive method for the quantification of microgram of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248 – 254.
- 25 Lowry OH, Roberts NR, Leiner KY, Wu ML, Farr AL. The quantitative histochemistry of brain. Chemical methods. J Biol Chem 1954; 207: 1 – 17.
- 26 Xavier SP, Carvalho PS, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium, submitted to different surface treatments. J Dent 2003; 31: 173 – 180.
- 27 Yang Y, Ong J. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPQ-coated Ti substrate. J Biomed Mater Res 2003; 64A: 509 – 516.
- 28 Aparicio C, Javier Gil F, Fonseca C, Barbosa M, Anton Planell J. Corrosion behaviour of commercially pure titanium shot balsted with different materials and sizes of shot particles for dental implant applications. Biomaterials 2003; 24: 263 – 273.
- 29 Hoepfner TP, Case E. The porosity dependance of the dielectric constant for sintered hydroxyapatite. J Biomed Mater Res 2002; 60: 643 – 650.
- 30 Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials 2003; 24: 213 – 218.
- 31 Koike M, Cai Z, Fuji H, Brezner M, Okabe T. Corrosion behavior of cast titanium with reduced surface reaction layer made by a face-coating method. Biomaterials 2003; 24: 4541 – 4549.
- 32 Reclaru L, Lerf R, Eschler PY, Blatter A, Meyer J-M. Evaluation of corrosion on plasma sprayed and anodized titanium implants, both with and without bone cement. Biomaterials 2003; 24: 3027 – 3038.
- 33 Cabrini M, Cigada A, Rondelli G, Vicentini B. Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials 1997; 18: 783 – 787.
- 34 Seah KHW, Thampuran R, Teoh SH. The influence of pore morphology on corrosion. Corrosion Sci 1998; 40: 547 – 546.
- 35 Valente T, Galliano FP. Corrosion resistance of reactive plasma-sprayed titanium composite coatings. Surface Coating Technol 2000; 127: 86 – 92.
- 36 Wirth C, Lagneau C, Exbrayat P, Ponsonnet L, Lissac M. Cell behaviour of rat calvaria bone cells on NiTi with different surface roughnesses. Eur Cell Mater 2003; 5: 57.
- 37 Deligianni D, Katsala N, Koutsoukos P, Missirlis Y. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation, and detachment strength. Biomaterials 2001; 22: 87 – 96.
- 38 Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995; 29: 389 – 401.