Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific)
Corresponding Author
Pierre E. Galand
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, FRE 3350, Laboratoire d’écogéochimie des environnements benthiques (LECOB), Observatoire Océanologique, Banyuls-sur-Mer, France
Correspondence: Pierre E. Galand, Observatoire Océanologique de Banyuls – LECOB, Av. du Fontaulé, Banyuls sur Mer 66650, France. Tel.: +33 430 192 451; fax: +33 468 887 395; e-mail: [email protected]Search for more papers by this authorMuriel Bourrain
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Laboratoires Pierre Fabre Dermo-Cosmétique, Vigoulet-Auzil, France
Search for more papers by this authorEmmanuel De Maistre
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorPhilippe Catala
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorYves Desdevises
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7232, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorHila Elifantz
School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
Search for more papers by this authorDavid L. Kirchman
School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
Search for more papers by this authorPhilippe Lebaron
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorCorresponding Author
Pierre E. Galand
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, FRE 3350, Laboratoire d’écogéochimie des environnements benthiques (LECOB), Observatoire Océanologique, Banyuls-sur-Mer, France
Correspondence: Pierre E. Galand, Observatoire Océanologique de Banyuls – LECOB, Av. du Fontaulé, Banyuls sur Mer 66650, France. Tel.: +33 430 192 451; fax: +33 468 887 395; e-mail: [email protected]Search for more papers by this authorMuriel Bourrain
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Laboratoires Pierre Fabre Dermo-Cosmétique, Vigoulet-Auzil, France
Search for more papers by this authorEmmanuel De Maistre
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorPhilippe Catala
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorYves Desdevises
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7232, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorHila Elifantz
School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
Search for more papers by this authorDavid L. Kirchman
School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
Search for more papers by this authorPhilippe Lebaron
UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-sur-Mer, France
Search for more papers by this authorAbstract
The Clipperton lagoon in the North Pacific Ocean has been isolated from the surrounding sea for c. 160 years. It has a stratified water column that comprises an oxic and brackish upper water layer (mixolimnion) and a deep sulfuric anoxic saline layer (monimolimnion), separated by a steep pycnocline. Here, we test whether the Clipperton lagoon with its distinctive physico-chemical features, geographic isolation, recent water column stratification, and large nutrient input harbors original microbial communities. The combination of capillary electrophoresis single-strand polymorphism (CE-SSCP) fingerprinting and sequencing of cloned bacterial and archaeal 16S rRNA genes, and functional genes for methanogenesis (mcrA), methanotrophy (pmoA), and sulfate reduction (dsrAB), revealed that microbial communities and pathways were highly stratified down the water column. The mixolimnion contained ubiquitous freshwater clades of Alpha- and Betaproteobacteria, while the pycnocline contained mostly green sulfur bacteria (phylum Chlorobi). Sequences of the upper layers were closely related to sequences found in other aquatic ecosystems, suggesting that they have a strong potential for dispersal and colonization. In contrast, the monimolimnion contained new deeply branching bacterial divisions within the OP11 cluster and the Bacteroidetes, and was the most diverse of the layers. The unique environmental conditions characterizing the deep layers of the lagoon may explain the novelty of the microbial communities found at the Clipperton atoll.
Supporting Information
Filename | Description |
---|---|
fem1209-sup-0001-FigureS1.docWord document, 60 KB | Fig. S1. Rarefaction curves calculated for 16S rRNA clone libraries of Archaea (grey lines) and Bacteria (black lines). |
fem1209-sup-0002-DataS1.docWord document, 30.5 KB | Data S1. Supporting results. Detailed description of OTUs found in the different layers of the Clipperton lagoon. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Banning N, Brock F, Fry JC, Parkes RJ, Hornibrook ERC & Weightman AJ (2005) Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ Microbiol 7: 947–960.
- Casamayor EO, Muyzer G & Pedros-Alio C (2001) Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing. Aquat Microb Ecol 25: 237–246.
- Casamayor EO, Ferrera I, Cristina X, Borrego CM & Gasol JM (2007) Flow cytometric identification and enumeration of photosynthetic sulfur bacteria and potential for ecophysiological studies at the single-cell level. Environ Microbiol 9: 1969–1985.
- Charpy L, Rodier M, Couté A, Perrette-Gallet C & Bley-Loëz C (2010) Clipperton, a possible future for atoll lagoons. Coral Reefs 29: 771–783.
- Cole JR, Chai B, Marsh TL et al. (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442–443.
- Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1: 285–292.
- Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG & Sinninghe Damste JS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9: 1001–1016.
- Daffonchio D, Borin S, Brusa T et al. (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440: 203–207.
- Delbès C, Moletta R & Godon J (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reactionsingle-strand conformation polymorphism analysis. Environ Microbiol 2: 506–515.
- DeLong EF (1992) Archaea in coastal marine environments. P Natl Acad Sci USA 89: 5685–5689.
- Doerfert SN, Reichlen M, Iyer P, Wang M & Ferry JG (2009) Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59: 1064–1069.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
- Ettwig K, Shima S, van de Pas-Schoonen K et al. (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10: 3164–3173.
- Felsenstein J (2008) PHYLIP (Phylogeny Inference Package) Version 3.68. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, WA.
- Gregersen LH, Habicht KS, Peduzzi S et al. (2009) Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiol Ecol 70: 30–41.
- Guindon S & Gascuel O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52: 696–704.
- Hanson RS & Hanson TE (1996) Methanotrophic bacteria. Microbiol Mol Biol Rev 60: 439–471.
- Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R & Widdel F (1999) Anaerobic oxidation of o-Xylene, m-Xylene, and homologous alkylbenzenes by new types of sulfate-reducing Bacteria. Appl Environ Microbiol 65: 999–1004.
- Harris JK, Kelley ST & Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70: 845–849.
- Hervàs A, Camarero L, Reche I & Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11: 1612–1623.
- Hugenholtz P, Pitulle C, Hershberger KL & Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180: 366–376.
- Jahnke LL, Orphan VJ, Embaye T, Turk KA, Kubo MD, Summons RE & Des Marais DJ (2008) Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. Geobiology 6: 394–410.
- Jiang H, Dong H, Yu B, Ye Q, Shen J, Rowe H & Zhang C (2008) Dominance of putative marine benthic Archaea in Qinghai Lake, north-western China. Environ Microbiol 10: 2355–2367.
- Kaluzhnaya M, Khmelenina V, Eshinimaev B et al. (2001) Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from Soda Lakes of the southeastern sransbaikal region and description of Methylomicrobium buryatense sp.nov. Syst Appl Microbiol 24: 166–176.
- Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT & Achenbach LA (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72: 1663–1666.
- Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu Y & Valentine DL (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73: 407–414.
- King GM (1984) Utilization of hydrogen, acetate, and‚ “noncompetitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3: 275–306.
- Koizumi Y, Kojima H & Fukui M (2004) Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization. Appl Environ Microbiol 70: 4930–4940.
- Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics ( E Stackebrandt & M Goodfellow, eds), pp. 115–175. Wiley, New York.
- Leclerc M, Delbes C, Moletta R & Godon JJ (2001) Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol Ecol 34: 213–220.
- Lehours A-C, Bardot C, Thenot A, Debroas D & Fonty G (2005) Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France. Appl Environ Microbiol 71: 7389–7400.
- Luton PE, Wayne JM, Sharp RJ & Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148: 3521–3530.
- Manske AK, Glaeser J, Kuypers MMM & Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 71: 8049–8060.
- Michelland RJ, Dejean S, Combes S, Fortun-Lamothe L & Cauquil L (2009) StatFingerprints: a friendly graphical interface program for processing and analysis of microbial fingerprint profiles. Mol Ecol Resour 9: 1359–1363.
- Musat N, Halm H, Winterholler B et al. (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. P Natl Acad Sci USA 105: 17861–17866.
- Nercessian O, Bienvenu N, David Moreira D, Prieur D & Jeanthon C (2005) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7: 118–132.
- Newton RJ, Jones SE, Eiler A, McMahon KD & Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75: 14–49.
- Obernosterer I, Catala P, Lami R et al. (2008) Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean. Biogeosciences 5: 693–705.
- Overmann J (2001) Green Sulfur Bacteria. John Wiley & Sons, Ltd, New York.
10.1038/npg.els.0000458 Google Scholar
- Overmann J, Beatty JT, Hall KJ, Pfennig N & Northcote TG (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36: 846–859.
- Overmann J, Cypionka H & Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155.
- Ovreas L, Forney L, Daae FL & Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63: 3367–3373.
- Pouliot J, Galand PE, Lovejoy C & Vincent WF (2009) Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environ Microbiol 11: 687–699.
- Ronquist F & Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
- Schloss PD & Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501–1506.
- Schmidtova J, Hallam SJ & Baldwin SA (2009) Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake. Environ Microbiol 11: 3233–3251.
- Scholten JCM, Joye SB, Hollibaugh JT & Murrell JC (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microbial Ecol 50: 29–39.
- Taipale S, Jones RI & Tiirola M (2009) Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses. Aquat Microb Ecol 55: 1–16.
- Takai K & Horikoshi K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152: 1285–1297.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol in press. doi: 10.1093/molbev/msr121.
- Teske A & Sorensen KB (2007) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2: 3–18.
- Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA & Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65: 4375–4384.
- Weimerskirch H, Le Corre M, Bost CA, Ballance LT & Pitman RL (2009) L'avifaune et l’écologie des oiseaux marins. Clipperton, environnement et biodiversité d'un microcosme océanique ( L Charpy, ed), pp. 420. Muséum national d'histoire naturelle, Paris.
- Weisburg WG, Barns SM, Pelletier DA & Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703.
- West NJ, Obernosterer I, Zemb O & Lebaron P (2008) Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol 10: 738–756.
- Wilkes H, Boreham C, Harms G, Zengler K & Rabus R (2000) Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria. Org Geochem 31: 101–115.
- Xing P, Hahn MW & Wu QL (2009) Low taxon richness of bacterioplankton in high-altitude lakes of the eastern tibetan plateau, with a predominance of Bacteroidetes and Synechococcus spp. Appl Environ Microbiol 75: 7017–7025.
- Zwart G, Crump BC, Agterveld M, Hagen F & Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28: 141–155.