Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China
Li Li
College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorHanna Sinkko
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorLeone Montonen
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorCorresponding Author
Gehong Wei
College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
Correspondence: Gehong Wei, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China. Tel.: +86 29 87091175; fax: +86 29 87091175; e-mail: [email protected]Search for more papers by this authorKristina Lindström
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorLeena A. Räsänen
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorLi Li
College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorHanna Sinkko
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorLeone Montonen
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorCorresponding Author
Gehong Wei
College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
Correspondence: Gehong Wei, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China. Tel.: +86 29 87091175; fax: +86 29 87091175; e-mail: [email protected]Search for more papers by this authorKristina Lindström
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorLeena A. Räsänen
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for more papers by this authorAbstract
A total of 159 endophytic bacteria were isolated from surface-sterilized root nodules of wild perennial Glycyrrhiza legumes growing on 40 sites in central and northwestern China. Amplified fragment length polymorphism (AFLP) genomic fingerprinting and sequencing of partial 16S rRNA genes revealed that the collection mainly consisted of Mesorhizobium, Rhizobium, Sinorhizobium, Agrobacterium and Paenibacillus species. Based on symbiotic properties with the legume hosts Glycyrrhiza uralensis and Glycyrrhiza glabra, we divided the nodulating species into true and sporadic symbionts. Five distinct Mesorhizobium groups represented true symbionts of the host plants, the majority of strains inducing N2-fixing nodules. Sporadic symbionts consisted of either species with infrequent occurrence (Rhizobium galegae, Rhizobium leguminosarum) or species with weak (Sinorhizobium meliloti, Rhizobium gallicum) or no N2 fixation ability (Rhizobium giardinii, Rhizobium cellulosilyticum, Phyllobacterium sp.). Multivariate analyses revealed that the host plant species and geographic location explained only a small part (14.4%) of the total variation in bacterial AFLP patterns, with the host plant explaining slightly more (9.9%) than geography (6.9%). However, strains isolated from G. glabra were clearly separated from those from G. uralensis, and strains obtained from central China were well separated from those originating from Xinjiang in the northwest, indicating both host preference and regional endemism.
Supporting Information
Filename | Description |
---|---|
fem1198-sup-0001-Supplement1Procedures.pdfapplication/PDF, 68.6 KB | Appendix S1. Procedures used for the extraction of DNA, selective AFLP-PCR and 16S rDNA-PCR. |
fem1198-sup-0002-FigureS1.pdfapplication/PDF, 53.7 KB | Fig. S1. Geographic locations of the three sampling regions, northern Xinjiang, southern Xinjiang and central China, where Glycyrrhiza nodules were collected. |
fem1198-sup-0003-FigureS2.pdfapplication/PDF, 19.5 KB | Fig. S2. Dendrogram based on the AFLP fingerprinting analysis showing the genetic diversity among endophytic bacteria isolated from the root nodules of Glycyrrhiza spp. growing in China. |
fem1198-sup-0004-FigureS3.pdfapplication/PDF, 13.8 KB | Fig. S3. Box plots visualising the homogeneity of multivariate group dispersions obtained from bacterial AFLP fingerprint data when the matrix of similarities (transformed to dissimilarities) was obtained by using the Dice coefficient. |
fem1198-sup-0005-TableS1.pdfapplication/PDF, 37.1 KB | Table S1. Environmental parameters, host plant and bacterial species identified from each sampling site. |
fem1198-sup-0006-TableS2.pdfapplication/PDF, 6.1 KB | Table S2. Pairwise comparison of multivariate dispersions of a priori groups. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alexander DB & Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12: 39–45.
- Aljanabi SM & Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25: 4692–4693.
- Amarger N, Macheret V & Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Evol Microbiol 47: 996–1006.
- Anderson MJ (2001) A new method for a non-parametric multivariate analysis of variance. Aust Ecol 26: 32–46.
- Anderson MJ (2004) DISTML v.5. Distance-Based Multivariate Analysis for a Linear Model. A Computer Program. Department of Statistics, University of Auckland, Auckland.
- Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.
- Anderson MJ & Gribble NA (1998) Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Aust J Ecol 23: 158–167.
- Anderson MJ & Robinson J (2003) Generalized discriminant analysis based on distances. Aust N Z J Stat 45: 301–318.
- Bai Y, D'Aoust F, Smith DL & Driscoll BT (2002) Isolation of plant-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48: 230–238.
- Bala A, Murphy P & Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12: 917–930.
- Beringer J (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 188–189.
- Bissett A, Richardson AE, Baker G, Wakelin S & Thrall PH (2010) Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales. Mol Ecol 19: 4315–4327.
- Borcard D, Legendre P & Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.
- Bremer C, Braker G, Matthies D, Beierkuhnlein C & Conrad R (2009) Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil. FEMS Microbiol Ecol 70: 377–387.
- Bromfield ESP, Tambong JT, Cloutier S, Prévost D, Laguerre G, van Berkum P, Tran Thi TV, Assabgui R & Barran LR (2010) Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. Microbiology 156: 505–520.
- Chen W, Wang E, Wang S, Li Y, Chen X & Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int J Syst Bacteriol 45: 153–159.
- Cho J-C & Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66: 5448–5456.
- Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R & Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12: 2998–3006.
- Cummings SP, Gyaneshwar P, Vinuesa P et al. (2009) Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 11: 2510–2525.
- de Lajudie P, Willems A, Nick G et al. (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22: 119–132.
- Dresler-Nurmi A, Terefework Z, Kaijalainen S, Lindström K & Hatakka A (2000) Silver stained polyacrylamide gels and fluorescence-based automated capillary electrophoresis for detection of amplified fragment length polymorphism patterns obtained from white-rot fungi in the genus Trametes. J Microbiol Methods 41: 161–172.
- Dresler-Nurmi A, Fewer D, Räsänen LA & Lindström K (2009) The diversity and evolution of rhizobia. Microbiology Monographs, Volume 8: Prokaryotic Symbionts in Plants ( K Pawlowski, ed), pp. 3–41. Springer-Verlag, Berlin.
- Egamberdieva D & Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45: 563–571.
- Fierer N & Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103: 626–631.
- Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D & Bielenberg J (2008) Antiviral effects of Glycyrrhiza species. Phytother Res 22: 141–148.
- Garbeva P, Postma J, van Veen JA & van Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8: 233–246.
- García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF & Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57: 844–848.
- Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T & Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2: 1221–1230.
- Hallman J, Quadt-Hallmann A, Mahaffee WF & Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43: 895–914.
- Hardoim PR, van Overbeek LS & van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16: 463–471.
- Hayashi H & Sudo H (2009) Economic importance of licorice. Plant Biotechnol 26: 101–104.
- Hayashi H, Hattori S, Inoue K, Sarsenbaev K, Ito M & Honda G (2003) Field survey of Glycyrrhiza plants in central Asia (1). Characterization of G. uralensis, G. glabra and the putative intermediate collected in Kazakhstan. Biol Pharm Bull 26: 867–871.
- Hughes Martiny JB, Bohannan BJM, Brown JH et al. (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4: 102–112.
- Jones DL, Nguyen C & Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321: 5–33.
- Kindt R & Coe R (2005) Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre, Nairobi.
- King EO, Ward MK & Raney DC (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44: 301–307.
- Kölliker R, Kraehenbuehl R, Boller B& Widmer F (2005) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29: 110–119.
- Kondo K, Shiba M, Yamaji H, Morota T, Zhengmin C, Huixia P & Shoyama Y (2007) Species identification of licorice using nrDNA and cpDNA genetic markers. Biol Pharm Bull 30: 1497–1502.
- Kushiev H, Noble AD, Abdullaev I & Toshbekov U (2005) Remediation of abandoned saline soils using Glycyrrhiza glabra: a study from the Hungry Steppes of Central Asia. Int J Agric Sustainability 3: 102–112.
10.1080/14735903.2005.9684748 Google Scholar
- Laranjo M, Machado J, Young JPW & Oliveira S (2004) High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 48: 101–107.
- Legendre P & Legendre L (1998) Numerical ecology, 2nd edn. Developments in Environmental Modelling 20. Elsevier Science B.V., Amsterdam.
- Lewis G, Schrire B, Mackinder B & Lock M (2005) (eds) Legumes of the World. Royal Botanic Gardens, Kew, London.
- Lindström K, Sarsa M-L, Polkunen J & Kansanen P (1985) Symbiotic nitrogen fixation of Rhizobium (Galega) in acid soils, and its survival in soil under acid and cold stress. Plant Soil 87: 293–302.
- Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M & van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21: 583–606.
- Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371.
- Mahdhi M, Nzoué A, Gueye F, Merabet C, de Lajudie P & Mars M (2007) Phenotypic and genotypic diversity of Genista saharae microsymbionts from the infra-arid region of Tunisia. Lett Appl Microbiol 45: 604–609.
- Mantelin S, Fischer-Le Saux M, Zakhia F, Béna G, Bonneau S, Jeder H, de Lajudie P & Cleyet-Marel J-C (2006) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56: 827–839.
- McArdle BH & Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.
- Mhamdi R, Mrabet M, Laguerre G, Tiwari R & Aouani ME (2005) Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can J Microbiol 51: 105–111.
- Micallef SA, Shiaris MP & Colón-Carmena A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60: 1729–1742.
- Muchugi A, Muluvi GM, Kindt R, Kadu CAC, Simons AJ & Jamnadass RH (2008) Genetic structuring of important medicinal species of genus Warburgia as revealed by AFLP analysis. Tree Genet Genomes 4: 787–795.
- Muresu R, Polone E, Sulas L et al. (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63: 383–400.
- Nemergut DR, Costello EK, Hamady M et al. (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13: 135–144.
- Oksanen J, Kindt R, Legendre P, O'Hara B, Simpson GL, Stevens MHH & Wagner H (2008) Vegan: Community Ecology Package. R package version 1.13-1. http://vegan.r-forge.r-project.org/.
- Papke RT & Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48: 293–303.
- Portier P, Fischer-Le Saux M, Mougel C, Lerondelle C, Chapulliot D, Thioulouse J & Nesme X (2006) Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Appl Environ Microbiol 72: 7123–7131.
- Quan ZX, Bae HS, Baek JH, Chen WF, Im WT & Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55: 2543–2549.
- R Development Core Team (2007) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. www.r-project.org.
10.1111/j.1462-2920.2006.01017.x Google Scholar
- Ramette A & Tiedje JM (2007a) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology and evolution. Microb Ecol 53: 197–207.
- Ramette A & Tiedje JM (2007b) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy system. P Natl Acad Sci USA 104: 2761–2766.
- Räsänen LA, Sprent JI & Lindström K (2001) Symbiotic properties of sinorhizobia isolated from Acacia and Prosopis nodules in Sudan and Senegal. Plant Soil 235: 193–210.
- Rincón A, Arenal F, González I, Manrique E, Lucas MM & Pueyo JJ (2008) Diversity of rhizobial bacteria isolated from nodules of the gypsophyte Ononis tridentata L. growing in Spanish soils. Microb Ecol 56: 223–233.
- Sierra G (1957) A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek 23: 15–22.
- Spaepen S, Vanderleyden J & Remans R (2007) Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Rev 31: 425–448.
- Sprent JI (2001) Nodulation in Legumes. Royal Botanic Gardens, Kew, London.
- Srividya S, Soumya S & Pooja K (2009) Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. Afr J Biotechnol 8: 1864–1870.
- Teather RM & Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43: 777–780.
- Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM & Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55: 1985–1989.
- Valverde A, Fterich A, Mahdhi M, Ramírez-Bahema M-H, Caviedes MA, Mars M, Velázquez E & Rodriguez-Llorente I (2010) Paenibacillus prosopidis sp. nov., isolated from nodules of Prosopis farcta. Int J Syst Evol Microbiol 60: 2182–2186.
- Vassilev N, Vassileva M & Nikolaeva I (2006) Simultaneous P-solubilising and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71: 137–144.
- Vincent JM (1970) A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook no. 15. International Biological Programme, London.
- Vinuesa P, Silva C, Werner D & Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34: 29–54.
- Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J & Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.
- Wang LL, Wang ET, Liu J, Li Y & Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52: 436–443.
- Weisburg WG, Barns SM, Pelletier DA & Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703.
- Wilson K (1994) Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology ( FM Ausubel, R Brent, RE Kingston, DD Moore, JG Seidman, JA Smith & K Struhl, eds), pp. 2.4.1–2.4.5. John Wiley & Sons Inc., New York.
- Yamamoto Y & Tani T (2005) Field study and pharmaceutical evaluation of Glycyrrhiza uralensis roots cultivated in China. J Trad Med 22: 86–97.
- Zakhia F, Jeder H, Willems A, Gillis M, Gillis M, Dreyfus B & Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51: 375–393.
- Zimnitskaya SA (2009) State of the reproductive system of populations of species of the genus Glycyrrhiza L. (Fabaceae). Contemp Problems Ecol 2: 392–395.