Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms
António Pagarete
Equipe EPPO-Evolution du Plancton et PaléoOcéans, CNRS-UMR7144, Université Pierre et Marie Curie, Station Biologique, Roscoff, France
Plymouth Marine Laboratory, The Hoe, Plymouth, UK
Search for more papers by this authorGildas Le Corguillé
CNRS/UMPC, FR2424, Service Informatique et Génomique, Station Biologique, Roscoff, France
Search for more papers by this authorBela Tiwari
NERC Environmental Bioinformatics Centre, Centre for Ecology and Hydrology, Wallingford, UK
Search for more papers by this authorHiroyuki Ogata
Structural and Genomic Information Laboratory, CNRS-UPR2589, Mediterranean Institute of Microbiology (IFR-88), Aix-Marseille University, Marseille, France
Search for more papers by this authorColomban de Vargas
Equipe EPPO-Evolution du Plancton et PaléoOcéans, CNRS-UMR7144, Université Pierre et Marie Curie, Station Biologique, Roscoff, France
Search for more papers by this authorWilliam H. Wilson
Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME, USA
Search for more papers by this authorCorresponding Author
Michael J. Allen
Plymouth Marine Laboratory, The Hoe, Plymouth, UK
Correspondence: Michael J. Allen, Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK. Tel.: +44 1752 633472; fax: +44 1752 633101; e-mail: [email protected]Search for more papers by this authorAntónio Pagarete
Equipe EPPO-Evolution du Plancton et PaléoOcéans, CNRS-UMR7144, Université Pierre et Marie Curie, Station Biologique, Roscoff, France
Plymouth Marine Laboratory, The Hoe, Plymouth, UK
Search for more papers by this authorGildas Le Corguillé
CNRS/UMPC, FR2424, Service Informatique et Génomique, Station Biologique, Roscoff, France
Search for more papers by this authorBela Tiwari
NERC Environmental Bioinformatics Centre, Centre for Ecology and Hydrology, Wallingford, UK
Search for more papers by this authorHiroyuki Ogata
Structural and Genomic Information Laboratory, CNRS-UPR2589, Mediterranean Institute of Microbiology (IFR-88), Aix-Marseille University, Marseille, France
Search for more papers by this authorColomban de Vargas
Equipe EPPO-Evolution du Plancton et PaléoOcéans, CNRS-UMR7144, Université Pierre et Marie Curie, Station Biologique, Roscoff, France
Search for more papers by this authorWilliam H. Wilson
Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME, USA
Search for more papers by this authorCorresponding Author
Michael J. Allen
Plymouth Marine Laboratory, The Hoe, Plymouth, UK
Correspondence: Michael J. Allen, Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK. Tel.: +44 1752 633472; fax: +44 1752 633101; e-mail: [email protected]Search for more papers by this authorAbstract
Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host–virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment.
Supporting Information
Filename | Description |
---|---|
fem1191-sup-0001-FigureS1.TIFimage/TIF, 99.7 MB | Fig. S1. E. huxleyi and coccolithovirus concentrations in Enclosures 1 to 6 as determined by flow cytometry. |
fem1191-sup-0002-FigureS2.tifimage/tif, 168.4 KB | Fig. S2. Hierarchical clustering of all transcription profiles through the use of Non-negative Matrix Factorization (Brunet et al., 2004). |
fem1191-sup-0003-FigureS3.TIFimage/TIF, 1,003.2 KB | Fig. S3. Non-negative Matrix Factorization (Brunet et al., 2004) of transcription profiles from Enclosures 2 and 3 including four daily time points (6, 12, 18, and 24 h). |
fem1191-sup-0004-FigureS4a.TIFimage/TIF, 3.2 MB | Fig. S4. Comparison microarray fluorescence signal vs. qPCR relative expression of host and virus genes, respectively. |
fem1191-sup-0005-FigureS4b.TIFimage/TIF, 3.8 MB | |
fem1191-sup-0006-FigureS4c.TIFimage/TIF, 3.2 MB | |
fem1191-sup-0007-FigureS4d.TIFimage/TIF, 2.5 MB | |
fem1191-sup-0008-FigureS4e.TIFimage/TIF, 4.7 MB | |
fem1191-sup-0009-FigureS5.tifimage/TIF, 15.8 KB | Fig. S5. Sequence alignment showing the homologous regions (dots) between the coccolithovirus serine palmitoyltransferase gene sequence and the E. huxleyi microarray probe ‘B.Read.TopHits.Contig12834_4576_46’. |
fem1191-sup-0010-TableS1.docWord document, 33.5 KB | Table S1. E. huxleyi and coccolithovirus qPCR primer sequences used in this study |
fem1191-sup-0011-TableS2.docWord document, 67.5 KB | Table S2. Sample cluster obtained after different distance metrics (Euclidean distance, Manhattan distance, Pearson Correlation, Pearson Uncentered) and Non-negative Matrix Factorization |
fem1191-sup-0012-TableS3.docWord document, 48 KB | Table S3. List of E. huxleyi probes that presented too high nucleotide alignment similarity to EhV genomic sequences, and hence were removed from analysis |
fem1191-sup-0013-TableS4.docWord document, 84 KB | Table S4. List of EhV and E. huxleyi probes that presented significant up-regulation from Cluster 1 to Cluster 2. KOG refers to the NCBI's list of EuKaryotic Orthologous Groups of proteins |
fem1191-sup-0014-DataS1.rtfWord document, 103.3 KB | Data S1 Supplementary Methods |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Allen MJ, Schroeder DC & Wilson WH (2006a) Preliminary characterisation of repeat families in the genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi. Arch Virol 151: 525–535.
- Allen MJ, Schroeder DC, Holden MTG & Wilson WH (2006b) Evolutionary history of the Coccolithoviridae. Mol Biol Evol 23: 86–92.
- Allen MJ, Schroeder DC, Donkin A, Crawfurd KJ & Wilson WH (2006c) Genome comparison of two Coccolithoviruses. Virol J 3: 15.
- Allen MJ, Forster T, Schroeder DC, Hall M, Roy D, Ghazal P & Wilson WH (2006d) Locus-specific gene expression pattern suggests a unique propagation strategy for a giant algal virus. J Virol 80: 7699–7705.
- Allen MJ, Martinez-Martinez J, Schroeder DC, Somerfield PJ & Wilson WH (2007) Use of microarrays to assess viral diversity: from genotype to phenotype. Environ Microbiol 9: 971–982.
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
- Bratbak G, Egge JK & Heldal M (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser 93: 39–48.
- Bratbak G, Heldal M, Thingstad TF & Tuomi P (1996) Dynamics of virus abundance in coastal seawater. FEMS Microbiol Ecol 19: 263–269.
- Breitbart M, Thompson LR, Suttle CA & Sullivan MB (2007) Exploring the vast diversity of marine viruses. Oceanography 20: 135–139.
- Brown CW & Yoder JA (1994) Coccolithophorid blooms in the global ocean. J Geophys Res 99: 7467–7482.
- Brunet JP, Tamayo P, Golub TR & Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. PNAS 101: 4164–4169.
- Brussaard CP (2004) Viral control of phytoplankton populations – a review. J Eukaryot Microbiol 51: 125–138.
- Brussaard CPD, Kuipers B & Veldhuis MJW (2005) A mesocosm study of Phaeocystis globosa population dynamics – 1. Regulatory role of viruses in bloom. Harmful Algae 4: 859–874.
- Castberg T, Larsen A, Sandaa RA et al. (2001) Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Mar Ecol Prog Ser 221: 39–46.
- Edgar R, Domrachev M & Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.
- Egge JK & Heimdal BR (1994) Blooms of phytoplankton including Emiliania huxleyi (Haptophyta) – effects of nutrient supply in different N-P ratios. Sarsia 79: 333–348.
- Han GS, Gable K, Yan LY et al. (2006) Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera. J Biol Chem 281: 39935–39942.
- Hannun YA & Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Bio 9: 139–150.
- Iyer LM, Balaji S, Koonin EV & Aravind L (2006) Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117: 156–184.
- Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W & Bratbak G (2002) Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat Microb Ecol 27: 111–124.
- Jacquet S, Miki T, Noble R, Peduzzi P & Wilhelm S (2010) Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Adv Oceanogr Limnol 1: 71–101.
10.1080/19475721003743843 Google Scholar
- Koonin E, Fedorova N, Jackson J et al. (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5: R7.
- Larsen A, Flaten GAF, Sandaa RA et al. (2004) Spring phytoplankton bloom dynamics in Norwegian coastal waters: microbial community succession and diversity. Limnol Oceanogr 49: 180–190.
- Mackinder LCM, Worthy CA, Biggi G et al. (2009) A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 90: 2306–2316.
- Maranger R, Bird DF & Juniper SK (1994) Viral and bacterial dynamics in Artic sea-ice during the spring algal bloom near Resolute, NWT, Canada. Mar Ecol Prog Ser 111: 121–127.
- Marie D, Brussaard CPD, Thyrhaug R, Bratbak G & Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65: 45–52.
- Martinez-Martinez J, Schroeder DC, Larsen A, Bratbak G & Wilson WH (2007) Molecular dynamics of Emiliania huxleyi and their co-occurring viruses during two separate mesocosm studies. Appl Environ Microbiol 73: 554–562.
- Monier A, Pagarete A, de Vargas C, Allen MJ, Read B, Claverie J-M & Ogata H (2009) Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res 19: 1441–1449.
- Nagasaki K, Ando M, Itakura S, Imai I & Ishida Y (1994) Viral mortality in the final stage of Heterosigma akashiwo (Raphidophyceae) red tide. J Plankton Res 16: 1595–1599.
- Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H & Risco C (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97: 147–172.
- Pagarete A, Allen MJ, Wilson W, Kimmance S & de Vargas C (2009) Host–virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ Microbiol 11: 2840–2848.
- Radtke K, Dohner K & Sodeik B (2006) Viral interactions with the cytoskeleton: a Hitchhiker's guide to the cell. Cell Microbiol 8: 387–400.
- Rowe JM, Fabre M-F, Gobena D, Wilson WH & Wilhelm SW (2011) Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses. FEMS Microbiol Ecol 76: 373–380.
- Saeed AI, Bhagabati NK, Braisted JC et al. (2006) TM4 Microarray Software Suite. Methods Enzymol 411: 134–193.
- Smyth GK. (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. ( R Gentleman, V Carey, S Dudoit, R Irizarry & H Huber, eds), pp. 397–420. Springer, New York.
10.1007/0-387-29362-0_23 Google Scholar
- Sorensen G, Baker AC, Hall MJ, Munn CB & Schroeder DC (2009) Novel virus dynamics in an Emiliania huxleyi bloom. J Plankton Res 31: 787–791.
- Suttle CA (2005) Viruses in the sea. Nature 437: 356–361.
- Team RDC. (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Team RDC, Vienna, Austria. http://www.R-project.org (last accessed 2010).
- Tusher VG, Tibshirani R & Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. PNAS 98: 5116–5121.
- UniProt (2010) The Universal Protein Resource. The Uniprot Consorcium. http://www.uniprot.org (last accessed 2010).
- Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J & Malin G (2002) Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. Journal of the Marine Biological Association of the UK 82: 369–377.
- Wilson WH, Schroeder DC, Allen MJ et al. (2005) Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309: 1090–1092.