Comparison of 16S rRNA and protein-coding genes as molecular markers for assessing microbial diversity (Bacteria and Archaea) in ecosystems
Simon Roux
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Search for more papers by this authorFrançois Enault
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Search for more papers by this authorGisè le Bronner
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Search for more papers by this authorCorresponding Author
Didier Debroas
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Correspondence: Didier Debroas, Universite Blaise Pascal, Laboratoire de Biologie des Protistes – UMR CNRS 6023, Aubiere 63177, France. Tel.: +334 7340 7837; fax: +334 7340 7670; e-mail: [email protected]Search for more papers by this authorSimon Roux
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Search for more papers by this authorFrançois Enault
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Search for more papers by this authorGisè le Bronner
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Search for more papers by this authorCorresponding Author
Didier Debroas
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont-Ferrand, France
CNRS, UMR 6023, LMGE, Aubiere, France
Correspondence: Didier Debroas, Universite Blaise Pascal, Laboratoire de Biologie des Protistes – UMR CNRS 6023, Aubiere 63177, France. Tel.: +334 7340 7837; fax: +334 7340 7670; e-mail: [email protected]Search for more papers by this authorAbstract
PCR amplification of the rRNA gene is the most popular method for assessing microbial diversity. However, this molecular marker is often present in multiple copies in cells presenting, in addition, an intragenomic heterogeneity. In this context, housekeeping genes may be used as taxonomic markers for ecological studies. However, the efficiency of these protein-coding genes compared to 16S rRNA genes has not been tested on environmental data. For this purpose, five protein marker genes for which primer sets are available, were selected (rplB, pyrG, fusA, leuS and rpoB) and compared with 16S rRNA gene results from PCR amplification or metagenomic data from aquatic ecosystems. Analysis of the major groups found in these ecosystems, such as Actinobacteria, Bacteroides, Proteobacteria and Cyanobacteria, showed good agreement between the protein markers and the results given by 16S rRNA genes from metagenomic reads. However, with the markers it was possible to detect minor groups among the microbial assemblages, providing more details compared to 16S rRNA results from PCR amplification. In addition, the use of a set of protein markers made it possible to deduce a mean copy number of rRNA operons. This average estimate is essentially lower than the one estimated in sequenced genomes.
Supporting Information
Filename | Description |
---|---|
fem1190-sup-0001-FigureS1.pdfapplication/PDF, 32.3 KB | Fig. S1. Schematic representation of the phylogenetic tree affiliation pipeline. |
fem1190-sup-0002-FigureS2.pdfapplication/PDF, 44.4 KB | Fig. S2. Taxonomic affiliation for GS12 and GS08 ecosystems, with five protein markers (rplB, pyrG, leuS, fusA and rpoB), metagenomic 16S rRNA and PCR-amplified 16S rRNA. |
fem1190-sup-0003-FigureS3.pdfapplication/PDF, 47.9 KB | Fig. S3. Taxonomic affiliation for minor groups (i.e. all groups with the exception of Actinobacteria and Proteobacteria) with five protein markers (rplB, pyrG, leuS, fusA and rpoB), metagenomic 16S rRNA and PCR-amplified 16S rRNA. |
fem1190-sup-0004-TableS1.pdfapplication/PDF, 40.1 KB | Table S1. Main characteristics of protein-coding genes used as phylogenetic markers. |
fem1190-sup-0005-TableS2.pdfapplication/PDF, 40.1 KB | Table S2. Percentage of correct affiliations for tree affiliation and best blast hit obtained from simulated data. |
fem1190-sup-0006-TableS3.pdfapplication/PDF, 40.6 KB | Table S3. Alpha-Proteobacteria affiliations for GS08. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169.
- Armougom F & Raoult D (2009) Exploring microbial diversity using 16S rRNA high-throughput methods. J Comput Sci Syst Biol 02: 74–92.
- Bateman A, Birney E, Durbin R, Eddy SR, Finn RD & Sonnhammer EL (1999) Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 27: 260–262.
- Biers EJ, Sun S & Howard EC (2009) Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl Environ Microbiol 75: 2221–2229.
- Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF & Kjelleberg S (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73: 278–288.
- Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.
- Cho J-C & Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66: 5448–5456.
- Coenye T & Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228: 45–49.
- Dahllöf I, Baillie H & Kjelleberg S (2000) rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66: 3376–3380.
- Debroas D, Humbert JF, Enault F, Bronner G, Faubladier M & Cornillot E (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget–France). Environ Microbiol 11: 2412–2424.
- DeLong EF (1992) Archaea in coastal marine environments. P Natl Acad Sci USA 89: 5685–5689.
- DeLong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8: 649–654.
- Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
- Eiler A & Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6: 1228–1243.
- Farrelly V, Rainey F & Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61: 2798–2801.
- Farris MH & Olson JB (2007) Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol 45: 376–381.
- Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA & Olsen GJ (2008) Critical Evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461–2470.
- Giovannoni SJ & Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437: 343–348.
- Guindon S & Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
- Hahn MW (2006) The microbial diversity of inland waters. Curr Opin Biotechnol 17: 256–261.
- Harris JK, Kelley ST & Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70: 845–849.
- Hong S, Bunge J, Leslin C, Jeon S & Epstein SS (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J 3: 1365–1373.
- Huang Y, Gilna P & Li W (2009) Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25: 1338–1340.
- Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3: REVIEWS0003.
- Huson DH, Richter DC, Mitra S, Auch AF & Schuster SC (2009) Methods for comparative metagenomics. BMC Bioinformatics 10 (suppl 1): S12.
- Jones DT, Taylor WR & Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275–282.
- Kanehisa M (2002) The KEGG database. Novartis Found Symp 247: 91–101; discussion 101–103, 119–128, 244–252.
- Keough BP, Schmidt TM & Hicks RE (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb Ecol 46: 238–248.
- Klappenbach JA, Dunbar JM & Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66: 1328–1333.
- Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB & Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.
- Konstantinidis KT & Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. P Natl Acad Sci U S A 101: 3160–3165.
- Konstantinidis KT, Ramette A & Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72: 7286–7293.
- Koski LB & Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52: 540–542.
- Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371.
- Martiny JBH, Bohannan BJM, Brown JH et al. (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4: 102–112.
- Morales SE & Holben WE (2009) Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis. Appl Environ Microbiol 75: 2677–2683.
- Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA & Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420: 806–810.
- Muhling M, Woolven-Allen J, Murrell JC & Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2: 379–392.
- Pham VD, Konstantinidis KT, Palden T & DeLong EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 10: 2313–2330.
- Philosof A, Sabehi G & Béjà O (2009) Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environ Microbiol 11: 3189–3200.
- Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, Tunlid A & Hagström A (2006) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16: 867–880.
- Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J & Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.
- Rusch DB, Halpern AL, Sutton G et al. (2007) The sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5: e77.
- Santos SR & Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6: 754–759.
- Schellenberg J, Links MG, Hill JE, Dumonceaux TJ, Peters GA, Tyler S, Ball TB, Severini A & Plummer FA (2009) Pyrosequencing of the chaperonin-60 universal target as a tool for determining microbial community composition. Appl Environ Microbiol 75: 2889–2898.
- Schleper C, Jurgens G & Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3: 479–488.
- Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC & Martiny JBH (2008) It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10: 2200–2210.
- Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K & Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60: 341–350.
- Stark M, Berger S, Stamatakis A & von Mering C (2010) MLTreeMap - accurate maximum likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies. BMC Genomics 11: 461.
- Thornburg CC, Zabriskie TM & McPhail KL (2010) Deep-sea hydrothermal vents: potential hot spots for natural products discovery? J Nat Prod 73: 489–499.
- Venter JC, Remington K, Heidelberg JF et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.
- von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, Jensen LJ, Ward N & Bork P (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315: 1126–1130.
- Wang Y & Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4: e7401.
- Whitaker RJ, Grogan DW & Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301: 976–978.
- Wu M & Eisen JA (2008) A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9: R151.
- Wu X, Monchy S, Taghavi S, Zhu W, Ramos J & van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35: 299–323.
- Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.