Historical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M. W. Beijerinck
Marian J. Figge
The Netherlands Culture Collection of Bacteria, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
Search for more papers by this authorLesley A. Robertson
Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
Search for more papers by this authorJennifer C. Ast
Department of Ecological and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Search for more papers by this authorCorresponding Author
Paul V. Dunlap
Department of Ecological and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Correspondence: Paul V. Dunlap, Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Ave., Ann Arbor, MI 48109-1048, USA. Tel.: +1 734 615 9099; fax: +1 734 763 0544; e-mail: [email protected]Search for more papers by this authorMarian J. Figge
The Netherlands Culture Collection of Bacteria, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
Search for more papers by this authorLesley A. Robertson
Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
Search for more papers by this authorJennifer C. Ast
Department of Ecological and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Search for more papers by this authorCorresponding Author
Paul V. Dunlap
Department of Ecological and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Correspondence: Paul V. Dunlap, Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Ave., Ann Arbor, MI 48109-1048, USA. Tel.: +1 734 615 9099; fax: +1 734 763 0544; e-mail: [email protected]Search for more papers by this authorAbstract
Luminous bacteria isolated by Martinus W. Beijerinck were sealed in glass ampoules in 1924 and 1925 and stored under the names Photobacterium phosphoreum and ‘Photobacterium splendidum’. To determine if the stored cultures were viable and to assess their evolutionary relationship with currently recognized bacteria, portions of the ampoule contents were inoculated into culture medium. Growth and luminescence were evident after 13 days of incubation, indicating the presence of viable cells after more than 80 years of storage. The Beijerinck strains are apparently the oldest bacterial cultures to be revived from storage. Multi-locus sequence analysis, based on the 16S rRNA, gapA, gyrB, pyrH, recA, luxA, and luxB genes, revealed that the Beijerinck strains are distant from the type strains of P. phosphoreum, ATCC 11040T, and Vibrio splendidus, ATCC 33125T, and instead form an evolutionarily distinct clade of Vibrio. Newly isolated strains from coastal seawater in Norway, France, Uruguay, Mexico, and Japan grouped with the Beijerinck strains, indicating a global distribution for this new clade, designated as the beijerinckii clade. Strains of the beijerinckii clade exhibited little sequence variation for the seven genes and approximately 6300 nucleotides examined despite the geographic distances and the more than 80 years separating their isolation. Gram-negative bacteria therefore can survive for many decades in liquid storage, and in nature, they do not necessarily diverge rapidly over time.
Supporting Information
Filename | Description |
---|---|
fem1177-sup-0001-TablesS1.docxWord document, 13 KB | Table S1. PCR primers, primer sequences, and reaction conditions used in this study. |
fem1177-sup-0002-TablesS2.docxWord document, 17.1 KB | Table S2. Genbank accession numbers for gene sequences analyzed in this study. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ast JC & Dunlap PV (2004) Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 181: 352–361.
- Ast JC & Dunlap PV (2005) Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7: 1641–1654.
- Ast JC, Urbanczyk H & Dunlap PV (2007a) Natural merodiploidy of the lux-rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. J Bacteriol 189: 6148–6158.
- Ast JC, Urbanczyk H, Cleenwerk I, Engelbeen K, Thompson F, DeVos P & Dunlap PV (2007b) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int J Syst Evol Microbiol 57: 2073–2078.
- Ast JC, Urbanczyk H & Dunlap PV (2009) Multi-gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio (Gammaproteobacteria: Vibrionaceae). Syst Appl Microbiol 32: 379–386.
- Battley EH (1987) Energetics of Microbial Growth. John Wiley and Sons, New York, NY.
- Baumann P, Baumann L & Mandell M (1971) Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107: 268–294.
- Baumann P, Baumann L, Bang SS & Woolkalis MJ (1980) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: abolition of the genus Beneckea. Curr Microbiol 4: 127–132.
- Baumann P, Furniss AL & Lee JV (1984) Genus Vibrio Pacini 1854. Bergey's Manual of Systematic Bacteriology, Vol. 1 ( NR Kreig & JG Holt, eds), pp. 518–538.Williams and Wilkins, Baltimore, MD.
- Beijerinck MW (1889a) Le Photobacterium luminosum, Bactérie lumineuse de la Mer du Nord. Arch Néerl Sci Exact Nat 23: 401–427.
- Beijerinck MW (1889b) Les bactéries lumineuses dans leurs rapports avec l'oxygène. Arch Néerl Sci Exact Nat 23: 416–427.
- Beijerinck MW (1891) Sur l'aliment photogène et l'aliment plastique des bactéries lumineuses. Arch Néerl Sci Exact Nat 24: 369–442.
- Beijerinck MW (1916) Die Leuchtbakterien der Nordsee im August und September. Folia Microbiol 4: 15–40.
- Calhoun DH (1985) Bacterial longevity in salt-free medium. Responses. ASM News 51: 1–2.
- Cash HA (1985) Bacterial longevity in salt-free medium. Responses. ASM News 51: 2.
- Cohn F (1878) Vezameling van stukken betreffende het geneeskundig staatsoetzicht in Neederland, p. 126 (as quoted in reference 10, p. 401).
- Dunlap PV (2009) Bioluminescence, microbial. The Desk Encyclopedia of Microbiology ( M Schaechter, ed.), pp. 202–218. Elsevier, Oxford.
10.1016/B978-012373944-5.00066-3 Google Scholar
- Dunlap PV & Kita-Tsukamoto K (2006) Luminous bacteria. The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn. Vol. 2 (Ecophysiology and Biochemistry) ( M Dworkin, S Falkow, E Rosenberg, K-H Schleifer & E Stackebrandt, eds), pp. 863–892. Springer-Verlag, New York, NY.
- Dunlap PV, Jiemji A, Ast JC, Pearce MM, Marques RR & Lavilla-Pitogo CR (2004) Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ Microbiol 6: 145–158.
- Dunlap PV, Davis KM, Tomiyama S, Fujino M & Fukui A (2008) Devlopmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes: Leiognathidae). Appl Environ Microbiol 74: 7471–7481.
- English VC & McManus AT (1985) Bacterial longevity in salt-free medium. Responses. ASM News 51: 1.
- Fischer B (1887) Bacteriologische Untersuchungen auf einer Reise nach West Indien. II. Uber einen lichtentwickelnden, in Meerswasser gefunden Spaltpilz. Zeitschr Hyg Infektkr 2: 54–95.
10.1007/BF02188241 Google Scholar
- Goloboff PA, Farris JS & Nixon KC (2006) 10 August, revision date. TNT: Tree Analysis Using New Technology, Version 1.0. http://www.zmuc.dk/public/phylogeny/TNT/.
- Haneda Y (1981) Preservation and utilization of luminous bacteria as a light source. Sci Rep Yokosuka Cy Mus 28: 79–83.
- Hartsell SE (1956) Maintenance of cultures under paraffin oil. Appl Microbiol 4: 350–355.
- Harvey EN (1952) Bioluminescence. Academic Press, New York, NY.
- Harvey EN (1957) A history of Luminescence from the Earliest Times Until 1900. American Philosophical Society, Philadelphia, PA.
10.5962/bhl.title.14249 Google Scholar
- Iacobellis NS & DeVay JE (1986) Long-term storage of plant-pathogenic bacteria in sterile distilled water. Appl Environ Microbiol 52: 388–389.
- Kamp AF, La Rivière JWM & Verhoven W (eds) (1959) Albert Jan Kluyver, His Life and Work. North-Holland Publishing Company, Amsterdam.
- Liu PV (1984) Bacterial longevity in salt-free medium. ASM News 50: 471.
- Ludwig F (1884) Micrococcus Pflugeri, ein neuer photogener Pilz. Hedwigia 23: 33–37.
- Molisch H (1912) Leuchtende Pflanzen. Eine Physiologische Studie. Gustav Fischer, Jena.
- Morita RY (1997) Bacteria in Oligotrophic Environments. Starvation-Survival Lifestyle. Chapman and Hall, New York, NY.
- Murray GRE (1985) More on bacterial bacterial longevity: the Murray collection. ASM News 51: 261–262.
- Nealson KH (1978) Isolation, identification and manipulation of luminous bacteria. Methods Enzymol 57: 153–166.
- Neush J (1879) Bactéries lumineuses sur la viande fraîsche. J Pharm Chim Paris 29: 20–22.
- Pedersen KL, Verdonck B, Austin DA et al. (1998) Taxonomic evidence that Vibrio carchariae Grimes et al. 1985 is a junior synonym of Vibrio harveyi (Johnson and Shunk 1936) Baumann et al. 1981. Int J Syst Bacteriol 48: 749–758.
- Pflüger E (1875) Ueber die Phosphorescenz verwesender Organismen. Arch Ges Physiol 11: 222–263.
10.1007/BF01659304 Google Scholar
- Reichelt JL & Baumann P (1973) Taxonomy of the marine, luminous bacteria. Arch Mikrobiol 94: 283–330.
- Reichelt JL, Baumann P & Baumann L (1976) Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch Microbiol 110: 101–120.
- Robertson LA (2003) The Delft School of Microbiology, from the nineteenth to the twenty-first century. Adv Appl Microbiol 52: 357–388.
- Robertson LA, Figge MJ & Dunlap PV (2011) Beijerinck and the bioluminescent bacteria: microbiological experiments in the late 19th and early 20th centuries. FEMS Microbiol Ecol 75: 185–194.
- Skerman VBD, McGowan V & Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30: 225–420.
- Sneath PHA (1986) Nomenclature of bacteria. Biological Nomenclature Today. IUBS Monograph Series, No. 2. ( WDL Ride & T Younès, eds), pp. 36–48. IRL Press, Oxford.
- Sneath PHA (ed.) (1992) International Code of Nomenclature of Bacteria. American Society for Microbiology, Washington, DC.
- Sutton A, Buencamino R & Eisenstark E (2000) rpoS Mutants in archival cultures of Salmonella enterica serovar Typhimurium. J Bacteriol 182: 4375–4379.
- Thompson FL, Hoste B, Vademeulebroecke K, Engelbeen K, Denys R & Swings J (2002) Vibrio trachuri Iwamoto et al. 1995 is a junior synonym of Vibrio harveyi (Johnson and Shunk 1936) Baumann et al. 1981. Int J Syst Evol Microbiol 52: 973–976.
- Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB & Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71: 5107–5115.
- Urbanczyk H, Ast JC, Higgins MJ, Carson J & Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov., and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57: 2823–2829.
- Urbanczyk H, Ast JC & Dunlap PV (2011) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35: 324–342.
- van Iterson G Jr, den Dooren de Jong LE & Kluyver AJ (1940) Martinus Willem Beijerinck. His life and Work. Martinus Nijhoof, The Hague.
10.1007/978-94-017-6107-9 Google Scholar
- Yoshizawa S, Wada M, Kita-Tsukamoto K, Ikemoto E, Yokota A & Kogure K (2009) Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59: 1645–1649.
- Yoshizawa S, Wada M, Yokota A & Kogure K (2010) Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from sea water. J Gen Appl Microbiol 56: 499–507.