Brain Death and Donor Heart Dysfunction: Implications in Cardiac Transplantation
Efstratios Apostolakis M.D.
University of Patras Medical School, Patras, Greece
Search for more papers by this authorHaralambos Parissis F.R.C.S.(C-Th).
St. James Hospital, Dublin, Ireland
Search for more papers by this authorDimitrios Dougenis M.D.
University of Patras Medical School, Patras, Greece
Search for more papers by this authorEfstratios Apostolakis M.D.
University of Patras Medical School, Patras, Greece
Search for more papers by this authorHaralambos Parissis F.R.C.S.(C-Th).
St. James Hospital, Dublin, Ireland
Search for more papers by this authorDimitrios Dougenis M.D.
University of Patras Medical School, Patras, Greece
Search for more papers by this authorAbstract
Abstract Aim: In this article, the hemodynamic, humoral, and immunological perturbations following brain death (BD) are going to be discussed in a stepwise manner. Materials and Methods: BD produces derangements in cardiac function, through a not-yet-well-explained mechanism. Using literature review, we attempted to delineate the “pathophysiology” involved. Results: A severe a-adrenergic stimulation following catecholamine storm results in conditions such that the pulmonary capillary pressure is massively increased. Furthermore, cytokine up-regulation, endothelial expression molecules, and neutrophil infiltration produce tissue damage. The end result reflects myocardial necrosis due to reduction of the calcium ATPase activity that leads to myocyte calcium overload and cell death. Conclusions: Delineation of the mechanisms responsible for donor heart dysfunction (DHD) would be presented. Furthermore, an attempt would be made to apply this knowledge into the clinical practice in order to increase the suitability of donor hearts for transplantation. (J Card Surg 2010;25:98-106)
REFERENCES
- 1 Hosenpud JD, Bennett LE, Keck BM, et al: The registry of the International Society for Heart and Lung Transplantation: Fifteenth official report—1998. J Heart Lung Transplant 1998; 17: 656-668.
- 2 Novitzky D, Wicomb WN, Cooper DKC, et al: Electrocardiographic, haemodynamic and endocrine changes occurring during experimental brain death in the Chacma baboon. Heart Transplant 1984; 4: 63-69.
- 3 Herijgers P, Leunens V, Tjandra-Maga TB, et al: Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation 1996; 62: 330-335.
- 4 Bittner HB, Chen EP, Craig D, et al: Preload-recruitable stroke work relationships and diastolic dysfunction in the brain-dead organ donor. Circulation 1996; 94(Suppl II): II320-II325.
- 5 J Kirklin, J Young, D McGiffin (eds): Heart Transplantation. Churchill-Livingstone, New York, 2002; pp. 295-296.
- 6 Lyons J, Pearl J, MacLean K, et al: Glucocorticoid administration reduces cardiac dysfunction after brain death in pigs. J Heart Lung Transplant 2005; 24: 2249-2254.
- 7 Byer E, Ashman R, Toth L: Electrocardiogram with large upright T-wave and long Q-T intervals. Am Heart J 1947; 33: 796-801.
- 8 Rajs J, Jakoffson S: Severe trauma and subsequent cardiac lesion causing heart failure and death. Forensic Sci 1976; 8: 13-21.
- 9 Cropp G, Manning G: Electrocardiographic changes simulating myocardial ischemia and interactions associated with spontaneous intracranial hemorrhage. Circulation 1960; 22: 25-28.
- 10 Brouwers PJAM, Wijdicks EFM, Hasan D, et al: Serial electrocardiographic recording in aneurysmal subarachnoid hemorrhage. Stroke 1989; 20: 1162-1167.
- 11 Di Pasquale G, Pinelli G, Andreoli A, et al: Holter detection of cardiac arrhythmias in intracranial subarachnoid hemorrhage. Am J Cardiol 1987; 59: 596-600.
- 12 Deibert E, Aiyagari V, Diringer M: Reversible left ventricular dysfunction associated with raised troponin I after subarachnoid haemorrhage does not preclude successful heart transplantation. Heart 2000; 84: 205-207.
- 13 Kono T, Morita H, Kuroiwa T, et al: Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: Neurogenic stunned myocardium. J Am Coll Cardiol 1994; 24: 636-640.
- 14 Mayer S, Limandri G, Sherman D, et al: Electrocardiographic markers of abnormal left ventricular wall motion in acute subarachnoid hemorrhage. J Neurosurg 1995; 83: 889-896.
- 15 Wilchelm M, Pratchke J, Beato F, et al: Activation of the heart by donor brain death accelerates acute rejection after transplantation. Circulation 2000; 102: 2426-2433.
- 16 Mayer S, Lin J, Homma S, et al: Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke 1999; 30: 780-786.
- 17 Lambert G, Naredi S, Eden E, et al: Sympathetic nervous activation following subarachnoid hemorrhage: Influence of intravenous clonidine. Acta Anaesthesiol Scand. 2002; 46: 160-165.
- 18 Horowitz MB, Willet D, Keffer J: The use of cardiac troponin I (cTnI) to determine the incidence of myocardial ischemia and injury in patients with aneurysmal and presumed aneurysmal subarachnoid hemorrhage. Acta Neurochir 1998; 140: 87-93.
- 19 Fabinyi G, Hunt D, McKinley L: Myocardial creatine kinase isoenzyme in serum after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1977; 40: 818-820.
- 20 Doshi R, Neil-Dwyer G: A clinicopathological study of patients following a subarachnoid hemorrhage. J Neurosurg 1980; 52: 295-301.
- 21 Kolin A, Norris J: Myocardial damage from acute cerebral lesions. Stroke 1984; 15: 990-993.
- 22 Elrifai AM, Bailes JE, Shih SR, et al: Characterization of the cardiac effects of acute subarachnoid hemorrhage in dogs. Stroke 1996; 27: 737-742.
- 23 Tung P, Kopelnik A, Banki N, et al: Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 2004; 35: 548-551.
- 24 Mayer SA, Fink ME, Homma S, et al: Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage. Neurology 1994; 44: 815-820.
- 25 Kantor HL, Krishnan SC: Cardiac problems in patients with neurologic disease. Cardiol Clin 1995; 13: 179-208.
- 26 Oppenheimer S, Wilson J, Guiraudon C, et al: Insular cortex stimulation produces lethal cardiac arrhythmias: A mechanism of sudden death? Brain Res 1991; 550: 115-121.
- 27 Hachinski VC, Smith KE, Silver MD, et al: Acute myocardial and plasma catecholamine changes in experimental stroke. Stroke 1986; 17: 387-390.
- 28 Woolf PD, Hamill RW, Lee LA, et al: The predictive value of catecholamines in assessing outcome in traumatic brain injury. J Neurosurg 1987; 66: 875-882.
- 29 Zaroff JG, Rordorf GA, Ogilvy CS, et al: Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: Evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr 2000; 13: 774-779.
- 30 Rosner M, Newsome H, Becker D: Mechanical brain injury: The sympathoadrenal response. J Neurosurg 1984; 61: 76-86.
- 31 Soblosky J, Rogers N, Adams J, et al: Central and peripheral biogenic amine effects of brain missile wounding and increased intracranial pressure. J Neurosurg 1992; 76: 119-126.
- 32 Powner D, Hendrich A, Nyhuis A, et al: Changes in serum catecholamine levels in patients who are brain dead. J Heart Lung Transplant 1992; 11: 1046-1053.
- 33 Novitzky D, Wicomb W, Cooper D, et al: Prevention of myocardial injury during brain death by total cardiac sympathectomy in the chacma baboon. Ann Thorac Surg 1986; 41: 520-524.
- 34 Todd G, Barold G, Pieper G, et al: Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesion. J Mol Cell Cardiol 1985; 17: 317-338.
- 35 Samuels M: Neurogenic heart disease: A unifying hypothesis. Am J Cardiol 1987; 60: 15J-19J.
- 36 Cebelin J, Hirsh S: Human stress cardiomyopathy. Hum Pathol 1980; 2: 123-132.
- 37 Melville K, Blum B, Shister H, et al: Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol 1963; 12: 781-791.
- 38 Bittner H, Kendall W, Campbell K, et al: A valid experimental brain death organ donor model. J Heart Lung Transplant 1995; 14: 308-317.
- 39 Shivalkar B, Van Loon J, Wieland W, et al: Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation 1993; 87: 230-239.
- 40 Herijgers P, Flameng W: The effect of brain death on cardiovascular function in rats, II: The cause of the in vivo haemodynamic changes. Cardiovasc Res 1998; 38: 107-115.
- 41 Novitzky D, Rose AG, Cooper DKC: Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation 1998; 45: 964-966.
- 42 Takada M, Nadeau KC, Hancock WW, et al: Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation 1998; 65: 1533-1542.
- 43 Pilati CF, Clark RS, Gillteaux J, et al: Excessive sympathetic nervous system activity decreases myocardial contractility. Proc Soc Exp Biol Med 1990; 193: 225-231.
- 44 Norris SL, Nosko M, Weir B, et al: Acute cardiopulmonary effects of subarachnoid hemorrhage in monkeys. Crit Care Med 1986; 14: 491-494.
- 45 Naredi S, Lambert G, Eden E, et al: Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke 2000; 31: 901-906.
- 46 Mertes P, Carteaux J, Jaboin Y, et al: Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation 1994; 57: 371-377.
- 47 Woolf PD, Hamill RW, Lee LA, et al: The predictive value of catecholamines in assessing outcome in traumatic brain injury. J Neurosurg 1987; 66: 875-882.
- 48 Banki N, Kopelnik A, Dae M, et al: Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation 2005; 112: 3314-3319.
- 49 Novitzky D: Novel actions of thyroid hormone: The role of triiodothyronine in cardiac transplantation. Thyroid 1996; 6: 531-536.
- 50 Novitzky D, Rhodin J, Cooper DKC, et al: Ultrastructure changes associated with brain death in the human donor heart. Transpl Int 1997; 10: 24-32.
- 51 Yuki K, Kodama Y, Onda J, et al: Coronary vasospasm following subarachnoid hemorrhage as a cause of stunned myocardium: Case report. J Neurosurg 1991; 75: 308-311.
- 52 Yasu T, Owa M, Omura N, et al: Transient ST elevation and left ventricular asynergy associated with normal coronary artery in aneurysmal subarachnoid hemorrhage. Chest 1993; 103: 1274-1275.
- 53 Bittner H, Chen E, Milano C, et al: Myocardial b-adrenergic receptor function and high-energy phosphates in brain death related cardiac dysfunction. Circulation 1995; 92: 472-78.
- 54 Drislane F, Samuels M, Kozakewich H, et al: Myocardial contraction band lesions in patients with fatal asthma: Possible neurocardiologic mechanisms. Am Rev Respir Dis 1987; 135: 498-501.
- 55 Andreoli A, Di Pasquale G, Pinelli G, et al: Subarachnoid hemorrhage: Frequency and severity of cardiac arrhythmias. Stroke 1987; 18: 558-564.
- 56 Kuroiwa T, Morita H, Tanabe H, et al: Significance of ST segment elevation in electrocardiograms in patients with ruptured cerebral aneurysms. Acta Neurochir Wien 1995; 133: 141-146.
- 57 Parekh N, Venkatesh B, Cross D, et al: Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol 2000; 36: 1328-1335.
- 58 Riou B, Dreux S, Roche S, et al: Circulating cardiac troponin T in potential heart transplant donors. Circulation 1995; 92: 409-414.
- 59 Bolli R: Mechanism of myocardial "stunning. Circulation 1990; 82: 723-738.
- 60 Goarin JP, Cohen S, Jacquens Y, et al: The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Anesth Analg 1996; 83: 41-47.
- 61 Young JB, Naftel DC, Bourge RC, et al: Matching the heart donor and heart transplant recipient. Clues for successful expansion of the donor pool: A multivariable, multiinstitutional report. J Heart Lung Transplant 1994; 13: 353-365.
- 62 Gilbert EM, Krueger SK, Murray JL, et al: Echocardiographic evaluation of potential cardiac transplant donors. J Thorac Cardiovasc Surg. 1988; 95: 1003-1007.
- 63 Grant JW, Canter CE, Spray TL, et al: Elevated donor cardiac troponin I: A marker of acute graft failure in infant heart recipients. Circulation 1994; 90: 2618-2621.
- 64 Anderson JR, Hossein-Nia M, Brown P, et al: Donor cardiac troponin-T predicts subsequent inotrope requirements following cardiac transplantation. Transplantation 1994; 58: 1056-1057.
- 65 Robotham JL, Takata M, Berman M, et al: Ejection fraction revisited. Anesthesiology 1991; 74: 172-183.
- 66 Sasaki H, Sada M, Beppu S, et al: Left ventricular pressure-volume relationships in brain-dead canine hearts: Preoperative evaluation of donor hearts. Transplant Proc 1989; 21: 2570-2572.
- 67 Tung PP, Olmsted E, Kopelnik A, et al: Plasma B-type natriuretic peptide levels are associated with early cardiac dysfunction after subarachnoid hemorrhage. Stroke 2005; 36: 1567-1571.
- 68 Doust JA, Glasziou PP, Pietrzak E, et al: A systematic review of the diagnostic accuracy of natriuretic peptides for heart failure. Arch Intern Med 2004; 164: 1978-1984.
- 69 Schillinger M: Brain natriuretic peptide and early cardiac dysfunction after subarachnoid hemorrhage. Stroke 2005; 36: 1570-1571.
- 70 Bittner H, Chen E, Biswas S, et al: Right ventricular dysfunction after cardiac transplantation: Primarily related to status of donor heart. Ann Thorac Surg 1999; 68: 1605-1611.
- 71 Pandalai P, Lyons J, Duffy J, et al: Role of the b-adrenergic receptor kinase in myocardial dysfunction after brain death. J Thorac Cardiovasc Surg 2005; 130: 1183-1189.
- 72 Szabo G, Hackert T, Sebening C, et al: Modulation of coronary perfusion pressure can reverse cardiac dysfunction after brain death. Ann Thorac Surg 1999; 67: 18-25.
- 73 Oishi Y, Nishimura Y, Imusaka K, et al: Impairment of coronary flow reserve and left ventricular function in the brain-dead canine heart. Eur J Cardiothorac Surg 2003; 24: 404-410.
- 74 D’Amico T, Meyers C, Koutlas T: Desensitization of myocardial beta-adrenergic receptors and deterioration of left ventricular function after brain death. J Thorac Cardiovasc Surg 1995; 110: 746-751.
- 75 Hall S, Wang L, Milne B, et al: Central dexmedetomidine attenuates cardiac dysfunction in a rodent model of intracranial hypertension. Can J Anesth 2004; 51: 1025-1033.
- 76 Ryan J, Hicks M, Cropper J, et al: Functional evidence of reversible ischemic injury immediately after the sympathetic storm associated with experimental brain death. J Heart Lung Transplant 2003; 22: 922-928.
- 77 Potapov E, Ivanitskaia E, Loebe M, et al: Value of cardiac troponin I and T for selection of heart donors and as predictors of early graft failure. Transplantation 2001; 71: 1394-1400.
- 78 Kono T, Nishina T, Morita H, et al: Usefulness of low-dose dobutamine stress echocardiography for evaluating reversibility of brain death-induced myocardial dysfunction. Am J Cardiol 1999; 84: 578-582.
- 79 Avkiran M: Rational basis for use of sodium-hydrogen exchange inhibitors in myocardial ischemia. Am J Cardiol 1999; 83: 10G-17G.
- 80 Fliegel L: Regulation of myocardial Na/H exchanger activity. Basic Res Cardiol 2001; 96: 301-305.