Adsorption of basic dyes from model aqueous solutions onto novel spherical silica support
Teofil Jesionowski
Poznan University of Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie sq. 2, 60-965 Poznan, PolandEmail: [email protected]
Search for more papers by this authorAgnieszka Andrzejewska
Poznan University of Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie sq. 2, 60-965 Poznan, PolandEmail: [email protected]
Search for more papers by this authorAndrzej Krysztafkiewicz
Poznan University of Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie sq. 2, 60-965 Poznan, PolandEmail: [email protected]
Search for more papers by this authorTeofil Jesionowski
Poznan University of Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie sq. 2, 60-965 Poznan, PolandEmail: [email protected]
Search for more papers by this authorAgnieszka Andrzejewska
Poznan University of Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie sq. 2, 60-965 Poznan, PolandEmail: [email protected]
Search for more papers by this authorAndrzej Krysztafkiewicz
Poznan University of Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie sq. 2, 60-965 Poznan, PolandEmail: [email protected]
Search for more papers by this authorAbstract
Removal of CI Basic Blue 9 or CI Basic Red 5 from model aqueous solutions has been studied with spherical silica precipitated in an emulsion system used as an adsorbent. The process of removal of the dye impurities has been studied for the dyes in a wide range of concentrations (50–2000 mg dm−3) in model systems. The degree of dye adsorption, chemical stability of the pigments obtained and their detailed physicochemical and morphological characterisation have been ascertained. In particular, the dye removal method proposed has been found to be highly effective in removing CI Basic Blue 9 (99.9%). The degree of dye extraction from the silica (SiO2) surface at the dye concentration in the model solutions in the range 1000–2000 mg dm−3 did not exceed 1.0%. The pigment composites produced are characterised by high uniformity of the particles (polydispersity index = 0.005) with the diameters ranging from 360 to 510 nm. The pigment particles are spherical in shape and of intense blue or red colour.
References
- 1 E Forgacs, T Cserhati and G Oros, Environ. Int., 30 (2004) 953.
- 2 T Robinson, G McMullan, R Marchant and P Nigam, Bioresour. Technol., 77 (2001) 247.
- 3 G Crini, Bioresour. Technol., 97 (2006) 1061.
- 4
P C Vandevivere,
R Bianchi and
W Verstrete, J. Chem. Technol. Biotechnol., 72 (1998) 289.
10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-# Google Scholar
- 5 S Barredo-Damas, M I Iborra-Clar, A Bes-Pia, M I Alcaina-Miranda, J A Mendoza-Roca and A Iborra-Clar, Desalination, 182 (2005) 267.
- 6 B Manu, Color. Technol., 123 (2007) 197.
- 7 S Papic, N Koprivanac, A L Bozic and A Metes, Dyes Pigm., 62 (2004) 293.
- 8 J-W Lee, S-P Choi, R Thiruvenkatachari, W-G Shim and H Moon, Dyes Pigm., 69 (2006) 196.
- 9 S H Lin and C F Peng, Water Res., 30 (1996) 587.
- 10 S K A Solmaz, A Birgül, G E Üstün and T Yonar, Color. Technol., 122 (2006) 102.
- 11 G Vishnu and K Joseph, Color. Technol., 123 (2007) 260.
- 12 C Hachem, F Bocquillon, O Zahraa and M Bouchy, Dyes Pigm., 49 (2001) 117.
- 13 J Wu, M A Eiteman and S E Law, J. Environ. Eng., 124 (1998) 272.
- 14 A Socha, E Sochocka, R Podsiadły and J Sokołowska, Color. Technol., 122 (2006) 207.
- 15 R Podsiadły, J Sokołowska, A Marcinek, J Zielonka, E Chrześcijańska and A Socha, Color. Technol., 119 (2003) 269.
- 16 T Jesionowski, Dyes Pigm., 55 (2002) 133.
- 17 T Jesionowski, A Krysztafkiewicz and S Binkowski, Dyes Pigm., 65 (2005) 267.
- 18 T Jesionowski, Dyes Pigm., 67 (2005) 81.
- 19 B Acemioğlu, Chem. Eng. J., 106 (2005) 73.
- 20 M Uğurlu, A Gürses and Ç Doğar, Color. Technol., 123 (2007) 106.
- 21 Y Al-Degs, M A M Khraisheh, S J Allen and M N Ahmad, Water Res., 34 (2000) 927.
- 22 M Sasaki, H Tamai, T Yoshida and H Yasuda, Carbon, 36 (1998) 1875.
- 23 H Tamai, T Yoshida, M Sasaki and H Yasuda, Carbon, 37 (1999) 983.
- 24 G M Walker and L R Weatherley, Chem. Eng. J., 83 (2001) 201.
- 25 E N El Qada, S J Allen and G M Walker, Chem. Eng. J., 24 (2006) 103.
- 26 S Wang, L Li, H Wu and Z H Zhu, J. Colloid Interface Sci., 292 (2005) 336.
- 27 L Nicolet and U Rott, Water Sci. Technol., 40 (1) (1999) 191.
- 28 G Newcombe, Water Sci. Technol., 40 (9) (1999) 191.
- 29 F Salvador and M D Merchán, Carbon, 34 (1996) 1543.
- 30 C O Ania, J A Menéndez, J B Parra and J J Pis, Carbon, 42 (2004) 1383.
- 31 M M Dávila-Jiménez, M P Elizalde-González and A A Peláez-Cid, Colloids Surf. A, 254 (2005) 107.
- 32 P Janoš, P Šedivý, M Rýznarová and S Grötschelová, Chemosphere, 59 (2005) 881.
- 33 T Robinson, B Chandran and P Nigam, Water Res., 36 (2002) 2824.
- 34 G Sun and X Xu, Ind. Eng. Chem. Res., 36 (1997) 808.
- 35 R Gong, Y Ding, M Li, Ch Yang, H Liu and Y Sun, Dyes Pigm., 64 (2005) 187.
- 36 R Gong, M Li, Ch Yang, Y Sun and J Chen, J. Hazard. Mater., 121 (2005) 247.
- 37 A K Jain, V K Gupta, A Bhatnagar and Suhas, J. Hazard. Mater., B101 (2003) 31.
- 38 M-S Kim, K-M Hong and J G Chung, Water Res., 37 (2003) 3524.
- 39 A Andrzejewska, A Krysztafkiewicz and T Jesionowski, Dyes Pigm., 62 (2004) 121.
- 40 A Andrzejewska, A Krysztafkiewicz and T Jesionowski, Dyes Pigm., 75 (2007) 116.
- 41 Z Wu, H Joo, I-S Ahn, S Haam, J-H Kim and K Lee, Chem. Eng. J., 102 (2004) 277.
- 42 Z Wu, H Joo and K Lee, Chem. Eng. J., 112 (2005) 227.
- 43 G E Berendsen and L De Golan, J. Liq. Chromatogr. Relat. Technol. 1 (1978) 561.