Why do cannabinoids not show consistent effects as analgetic drugs in multiple sclerosis?
F. S. Lienau
Neurochemical Research Group, Department of Neurology, University of Lübeck, Lübeck, Germany
Search for more papers by this authorH. Füllgraf
Neurochemical Research Group, Department of Neurology, University of Lübeck, Lübeck, Germany
Search for more papers by this authorA. Moser
Neurochemical Research Group, Department of Neurology, University of Lübeck, Lübeck, Germany
Search for more papers by this authorT. J. Feuerstein
Neuropharmacology Section, Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
Search for more papers by this authorF. S. Lienau
Neurochemical Research Group, Department of Neurology, University of Lübeck, Lübeck, Germany
Search for more papers by this authorH. Füllgraf
Neurochemical Research Group, Department of Neurology, University of Lübeck, Lübeck, Germany
Search for more papers by this authorA. Moser
Neurochemical Research Group, Department of Neurology, University of Lübeck, Lübeck, Germany
Search for more papers by this authorT. J. Feuerstein
Neuropharmacology Section, Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
Search for more papers by this authorAbstract
The effectiveness of cannabinoids (CB) in the treatment of pain in patients with multiple sclerosis (MS) varies. The pathogenesis of pain in MS is diverse as are the possible effects of CB at different sites of CB receptors in the peripheral and central nervous system, this may explain the variable impact on individual patients. The aim of this review is to summarize pre-clinical and clinical studies to explain this variability from a neuropharmacological point of view. Future studies are needed to examine specific effects on distinct symptoms in homogenous groups of patients.
References
- 1 Henze T, Toyka KV, et al. Multiple Sklerose Therapie Konsensus Gruppe (MSTKG). Symptomatische Therapie der Multiplen Sklerose. Nervenarzt 2004; 75(Suppl. 1): 2–39.
- 2 Mumenthaler M. Multiple Sklerose. In: Mumenthaler, Mattle, eds. Neurologie, 10th edn. Stuttgart: Georg Thieme Verlag, 1997: 471–483.
- 3 Scheid W. Encephalomyelitis disseminata. In: Scheid, Gibbels, eds. Lehrbuch der Neurologie, 4th edn. Stuttgart: Georg Thieme Verlag, 1980: 765–775.
- 4 Paty DW, Ebers GC. Multiple Sclerosis. Philadelphia: Davis FA, 1998.
- 5 Bär M, Braune S. Schmerzsyndrome. In: Hufschmidt, Lücking, eds. Neurologie compact, 3rd edn. Stuttgart: Georg Thieme Verlag, 2002: 371–397.
- 6 Poser S, Wikström J, Bauer HJ. Multiple Sklerose und verwandte Krankheiten. In: Hopf/Poeck/Schliack, eds. Neurologie in Praxis und Klinik. Stuttgart: Georg Thieme Verlag, 1981: 5.1–5.31.
- 7 Ehde DM, Jensen MP, Engel JM, Turner JA, Hoffmann AJ, Cardenas DD. Chronic pain secondary to disability: a review. Clinical Journal of Pain 2003; 19: 3–17.
- 8 Waxman SG. Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy. Progress in Brain Research 2005; 148: 353–365.
- 9 Waxman SG. Acquired channelopathies in nerve injury and MS. Neurology 2001; 56: 1621–1627.
- 10 Lo AC, Saab CY, Black JA, Waxman SG. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. Journal of Neurophysiology 2003; 90: 3566–3571.
- 11 Hains BC, Saab CY, Waxman SG. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain 2005; 128: 2359–2371.
- 12 Dutta R, McDonough J, Yin X, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology 2006; 59: 478–489.
- 13 Brenneisen R, Egli A, Elsohly MA, Henn V, Spiess Y. The effect of orally and rectally administered delta-9-tetrahydrocannabinol on spasticity: a pilot study with 2 patients. International Journal of Clinical Pharmacology and Therapeutics 1996; 34: 446–452.
- 14 Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked cannabis on patients with multiple sclerosis. European Neurology 1997; 38: 44–48.
- 15 Martyn CN, Illis LS, Thom J. Nabilone in the treatment of multiple sclerosis. Lancet 1995; 345: 579.
- 16 Maurer M, Henn V, Dittrich A, Hofmann A. Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single double-blind trial. European Archives of Psychiatry and Clinical Neuroscience 1990; 240: 1–4.
- 17 Page SA, Verhoef MJ, Stebbins RA, Metz LM, Levy JC. Cannabis used as described by people with multiple sclerosis. The Canadian Journal of Neurological Sciences 2003; 30: 201–205.
- 18 Petro DJ, Ellenberger C. Treatment of human spasticity with delta 9-tetrahydrocannabinol. Journal of Clinical Pharmacology 1981; 21(Suppl. 8–9): 413S–416S.
- 19 Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clinical Rehabilitation 2003; 17: 21–29.
- 20 Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomized double blind placebo controlled crossover trial. British Medical Journal 2004; 329: 253–257.
- 21 Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005; 65: 812–819.
- 22 Notcutt W, Price M, Miller R, et al. Initial experiences with medical extracts of cannabis for chronic pain: results from 34 ‘n of 1’ studies. Anaesthesia 2004; 59: 440–452.
- 23 Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Multiple Sclerosis 2004; 10: 434–441.
- 24 Killestein J, Hoogervorst EL, Reif M, et al. Safety, tolerability and efficacy of orally administered cannabinoids in MS. Neurology 2002; 58: 1404–1407.
- 25 Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicenter randomized placebo-controlled trial. Lancet 2003; 362: 1517–1526.
- 26 Greenberg HS, Werness SA, Pugh JE, Andrus RO, Anderson DJ, Domino EF. Short-term effects of marijuana on balance in patients with multiple sclerosis and normal volunteers. Clinical Pharmacology and Therapeutics 1994; 55: 324–328.
- 27 Zajicek JP, Sanders HP, Wright DE, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. Journal of Neurology, Neurosurgery, and Psychiatry 2005; 76: 1664–1669.
- 28 Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to a cannabinoid receptor. Science 1992; 258: 1946–1949.
- 29 Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology 1995; 50: 83–90.
- 30 Hanus L, Abu-Lafi S, Fride E, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 3662–3665.
- 31 Porter AC, Sauer JM, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. The Journal of Pharmacology and Experimental Therapeutics 2002; 301: 1020–1024.
- 32 Piomelli D. The molecular logic of endocannabinoid signaling. Nature Reviews. Neuroscience 2003; 4: 873–883.
- 33 Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 2001; 29: 717–727.
- 34 Alger BE. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Progress in Neurobiology 2002; 68: 247–286.
- 35 Alger BE, Pitler TA. Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends in Neurosciences 1995; 18: 333–340.
- 36 Feuerstein TJ. Zentrale Muskelrelaxantien. In: Aktories/ Förstermann/ Hofmann/ Starke: eds, Allgemeine und spezielle Pharmakologie und Toxikologie, 9th edn. Munich: Elsevier GmbH, Urban und Fischer Verlag, 2004: 301–304.
- 37 Iversen L. Cannabis and the brain. Brain 2003; 126: 1252–1270.
- 38 Herkenham M, Lynn AB, Little MD, et al. Cannabinoid receptor localization in brain. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 1932–1936.
- 39 Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM. Immunhistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998; 83: 393–411.
- 40 Iversen LL, Chapman V. Cannabinoids: a real prospect for pain relief? Current Opinion in Pharmacology 2002; 2: 50–55.
- 41 Maione S, Bisogno T, De Novellis V, et al. Elevation of endocannabinoid levels in the vetrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. The Journal of Pharmacology and Experimental Therapeutics 2006; 316: 969–982.
- 42 Walker JM, Hohmann AG, Martin WJ, Strangman NM, Huang SM, Tsou K. The neurobiology of cannabinoid analgesia. Life Science 1999; 65: 665–673.
- 43 Ibrahim MM, Porreca F, Lai J, et al. CB2cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 3093–3098.
- 44 Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O'Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. European Journal of Neuroscience 2003; 17: 2750–2754.
- 45 Steffens M, Zentner J, Honegger J, Feuerstein TJ. Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor. Biochemical Pharmacology 2005; 69: 169–178.
- 46 Steffens M, Szabo B, Klar M, Rominger A, Zentner J, Feuerstein TJ. Modulation of electrically evoked acetylcholine release through cannabinoid CB1 receptors: evidence for an endocannabinoid tone in the human neocortex. Neuroscience 2003; 120: 455–465.
- 47 Steffens M, Engler C, Zentner J, Feuerstein TJ. Cannabinoid CB1 receptor-mediated modulation of evoked dopamine release and of adenylyl cyclase activity in the human neocortex. British Journal of Pharmacology 2004; 141: 1193–1203.
- 48 Steffens M, Feuerstein TJ, Van Velthofen V, Schnierle P, Knörle R. Qantitative measurement of depolarization-induced anandamide release in human and rat neocortex. Naunyn-Schmiedeberg's Archives of Pharmacology 2003; 368: 432–436.
- 49 Di Marzo V, Bisogno T, De Petrocellis L. Anandamide: some like it hot. Trends in Pharmacological Sciences 2001; 22: 346–349.
- 50 Zygmunt PM, Petersson J, Andersson DA, et al. Vanilloid receptors on sensory nerves mediate the vasodilatator action of anandamide. Nature 1999; 400: 452–457.
- 51 Tognetto M, Amadesi S, Harrison S, et al. Aanandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. The Journal of Neuroscience 2001; 21: 1104–1109.
- 52 Mainelli S, Di Marzo V, Berretta N, et al. Presynaptic facilitation of glutamateric synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. The Journal of Neuroscience 2003; 23: 3136–3144.