A Copula-Based BRDF Model
Aydın Öztürk
Department of Computer Engineering, Yasar University, Turkey [email protected]
Search for more papers by this authorMurat Kurt
International Computer Institute, Ege University, Turkey [email protected] , [email protected]
Search for more papers by this authorAhmet Bilgili
International Computer Institute, Ege University, Turkey [email protected] , [email protected]
Search for more papers by this authorAydın Öztürk
Department of Computer Engineering, Yasar University, Turkey [email protected]
Search for more papers by this authorMurat Kurt
International Computer Institute, Ege University, Turkey [email protected] , [email protected]
Search for more papers by this authorAhmet Bilgili
International Computer Institute, Ege University, Turkey [email protected] , [email protected]
Search for more papers by this authorAbstract
In this paper, we introduce a novel approach for modeling surface reflection. We focus on using a family of probability distributions called Archimedean copulas as BRDF models. The Archimedean representation has an attractive property in that the multivariate distributions are characterized by their marginal distributions through a single univariate function only. It is shown that the proposed model meets the reciprocity property of reflection. Based on measured BRDF data, we demonstrate that the proposed approach provides a good approximation to BRDF. Empirical comparisons are made with some classically used BRDF models.
References
- [APS00] Ashikhmin M., Premože S., Shirley P.: A microfacet-based brdf generator. In Proc. SIGGRAPH '00 (2000), pp. 65–74.
- [Bli77]
Blinn J. F.: Models of light reflection for computer synthesized pictures. In
Proc. SIGGRAPH '77 (1977), pp. 192–198.
10.1145/563858.563893 Google Scholar
- [CT81] Cook R. L., Torrance K. E.: A reflectance model for computer graphics. In Proc. SIGGRAPH '81 (1981), pp. 307–316.
- [EBJ*06] Edwards D., Boulos S., Johnson J., Shirley P., Ashikhmin M., Stark M., Wyman C.: The halfway vector disk for BRDF modeling. ACM TOG 25, 1 (Jan. 2006), 1–18.
- [Fou95] Fournier A.: Separating reflection functions for linear radiosity. In Eurographics Workshop on Rendering (1995), pp. 296–305.
- [FV98]
Frees E. W.,
Valdez E.: Understanding relationships using copulas.
North American Actuarial Journal
2, 1 (1998), 1–25.
10.1080/10920277.1998.10595667 Google Scholar
- [GF07] Genest C., Favre A. C.: Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering 12, 4 (2007), 347–367.
- [HTSG91]
He X. D.,
Torrance K. E.,
Sillion F. X.,
Greenberg D. P.: A comprehensive physical model for light reflection. In
Proc. SIGGRAPH '91 (1991), pp. 175–186.
10.1145/122718.122738 Google Scholar
- [JAD*03] Jensen H. W., Arvo J., Dutre P., Keller A., Owen A., Pharr M., Shirley P.: Course 44: Monte Carlo ray tracing. In ACM SIGGRAPH 2003 Full Conference DVD-ROM (2003).
- [Joe97]
Joe H.: Multivariate Models and Dependence Concepts. Chapman and Hall, 1997.
10.1201/b13150 Google Scholar
- [Kaj85]
Kajiya J. T.: Anisotropic reflection models. In
Proc. SIGGRAPH '85 (1985), pp. 15–21.
10.1145/325334.325167 Google Scholar
- [KM99] Kautz J., Mccool M. D.: Interactive rendering with arbitrary brdfs using separable approximations. In Eurographics Workshop on Rendering (1999), pp. 247–260.
- [KvDS96]
Koenderink J. J.,
Van Doorn A. J.,
Stavridi M.: Bidirectional reflection distribution function expressed in terms of surface scattering modes. In
ECCV '96: Proc. of the 4th European Conference on Computer Vision-Volume II (1996), Springer-Verlag, pp. 28–39.
10.1007/3-540-61123-1_125 Google Scholar
- [LC07]
Li X.,
Cai J.: Robust transmission of jpeg2000 encoded images over packet loss channels. In
Proc. of the IEEE Int. Conference on Mul. and Expo (2007), pp. 947–950.
10.1109/ICME.2007.4284808 Google Scholar
- [Lew94] Lewis R. R.: Making shaders more physically plausible. Computer Graphics Forum 13, 3 (1994), 1–13.
- [LFTG97]
Lafortune E. P.,
Foo S.-C.,
Torrance K. E.,
Greenberg D. P.: Non-linear approximation of reflectance functions. In
Proc. SIGGRAPH '97 (1997), pp. 117–126.
10.1145/258734.258801 Google Scholar
- [LRR04] Lawrence J., Rusinkiewicz S., Ramamoorthi R.: Efficient brdf importance sampling using a factored representation. ACM TOG 23, 3 (Aug. 2004), 496–505.
- [MAA01] McCool M. D., Ang J., Ahmad A.: Homomorphic factorization of brdfs for high-performance rendering. In Proc. SIGGRAPH '01 (2001), pp. 171–178.
- [MPBM03] Matusik W., Pfister H., Brand M., McMillan L.: A data-driven reflectance model. ACM TOG 22, 3 (July 2003), 759–769.
- [NDM05] Ngan A., Durand F., Matusik W.: Experimental analysis of brdf models. In Proc. of the Eurographics Symposium on Rendering (2005), pp. 117–226.
- [Nel06] Nelsen R. B.: An Introduction to Copulas. Springer-Verlag, New York , 2006.
- [NRH*77]
Nicodemus F. E.,
Richmond J. C.,
Hsia J. J.,
Ginsberg I. W.,
Limperis T.: Geometrical Considerations and Nomenclature for Reflectance.
Monograph, National Bureau of Standards (US)
, Oct. 1977.
10.6028/NBS.MONO.160 Google Scholar
- [OKBG08] Ozturk A., Kurt M., Bilgili A., Gungor C.: Linear approximation of bidirectional reflectance distribution functions. Computers & Graphics 32, 2 (Apr. 2008), 149–158.
- [ON94]
Oren M.,
Nayar S. K.: Generalization of lambert's reflectance model. In
Proc. SIGGRAPH '94 (1994), pp. 239–246.
10.1145/192161.192213 Google Scholar
- [PF90]
Poulin P.,
Fournier A.: A model for anisotropic reflection. In
Proc. SIGGRAPH '90 (1990), pp. 273–282.
10.1145/97879.97909 Google Scholar
- [Pho75] Phong B. T.: Illumination for computer generated pictures. Commun. ACM 18, 6 (June 1975), 311–317.
- [Rus98] Rusinkiewicz S. M.: A new change of variables for efficient brdf representation. In Eurographics Workshop on Rendering (1998), pp. 11–22.
- [SAS05] Stark M. M., Arvo J., Smits B.: Barycentric parameterizations for isotropic brdfs. IEEE Transactions on Visualization and Computer Graphics 11, 2 (Mar. 2005), 126–138.
- [SS95]
Schröder P.,
Sweldens W.: Spherical wavelets: efficiently representing functions on the sphere. In
Proc. SIGGRAPH '95 (1995), pp. 161–172.
10.1145/218380.218439 Google Scholar
- [TS67] Torrance K. E., Sparrow E. M.: Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 9 (September 1967), 1105–1114.
- [War92] Ward G. J.: Measuring and modeling anisotropic reflection. In Proc. SIGGRAPH '92 (1992), pp. 265–272.
- [WAT92] Westin S. H., Arvo J. R., Torrance K. E.: Predicting reflectance functions from complex surfaces. In Proc. SIGGRAPH '92 (1992), pp. 255–264.
- [WLT04] Westin S. H., Li H., Torrance K. E.: A Field Guide to BRDF Models. Technical report PCG-04-01, Program of Computer Graphics, Cornell University , Jan. 2004.
- [WM01] Westlund H. B., Meyer G. W.: Applying appearance standards to light reflection models. In Proc. SIGGRAPH '01 (2001), pp. 501–510.
- [WMNO06] Waltz R. A., Morales J. L., Nocedal J., Orban D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming 107, 3 (2006), 391–408.
- [WTL04] Wang R., Tran J., Luebke D. P.: All-frequency relighting of non-diffuse objects using separable brdf approximation. In Proc. of the Eurographics Symposium on Rendering (2004), pp. 345–354.
- [WVS07] Wu F., Valdez E. A., Sherris M.: Simulating exchangeable multivariate archimedean copulas and its applications. Communications in Statistics 36, 5 (Sept. 2007), 1019–1034.