Damped Lyman α systems in galaxy formation simulations
Corresponding Author
Andrew Pontzen
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
E-mail: [email protected]Search for more papers by this authorFabio Governato
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Search for more papers by this authorMax Pettini
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
Search for more papers by this authorC. M. Booth
Department of Physics, Institute for Computational Cosmology, University of Durham, South Road, Durham
Sterrewacht Leiden, University of Leiden, P.O. Box 9513, 2300 RA Leiden, the Netherlands
Search for more papers by this authorGreg Stinson
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
Search for more papers by this authorJames Wadsley
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
Search for more papers by this authorAlyson Brooks
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Search for more papers by this authorThomas Quinn
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Search for more papers by this authorMartin Haehnelt
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
Search for more papers by this authorCorresponding Author
Andrew Pontzen
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
E-mail: [email protected]Search for more papers by this authorFabio Governato
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Search for more papers by this authorMax Pettini
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
Search for more papers by this authorC. M. Booth
Department of Physics, Institute for Computational Cosmology, University of Durham, South Road, Durham
Sterrewacht Leiden, University of Leiden, P.O. Box 9513, 2300 RA Leiden, the Netherlands
Search for more papers by this authorGreg Stinson
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
Search for more papers by this authorJames Wadsley
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
Search for more papers by this authorAlyson Brooks
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Search for more papers by this authorThomas Quinn
Astronomy Department, Box No. 351580, University of Washington, Seattle, WA 98195, USA
Search for more papers by this authorMartin Haehnelt
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
Search for more papers by this authorABSTRACT
We investigate the population of z= 3 damped Lyman α systems (DLAs) in a recent series of high-resolution galaxy formation simulations. The simulations are of interest because they form at z= 0 some of the most realistic disc galaxies to date. No free parameters are available in our study: the simulation parameters have been fixed by physical and z= 0 observational constraints, and thus our work provides a genuine consistency test. The precise role of DLAs in galaxy formation remains in debate, but they provide a number of strong constraints on the nature of our simulated bound systems at z= 3 because of their coupled information on neutral H i densities, kinematics, metallicity and estimates of star formation activity.
Our results, without any parameter tuning, closely match the observed incidence rate and column density distributions of DLAs. Our simulations are the first to reproduce the distribution of metallicities (with a median of ZDLA≃ Z⊙/20) without invoking observationally unsupported mechanisms such as significant dust biasing. This is especially encouraging given that these simulations have previously been shown to have a realistic 0 < z < 2 stellar mass–metallicity relation. Additionally, we see a strong positive correlation between sightline metallicity and low-ion velocity width, the normalization and slope of which come close to matching recent observational results. However, we somewhat underestimate the number of observed high-velocity width systems; the severity of this disagreement is comparable to other recent DLA-focused studies.
DLAs in our simulations are predominantly associated with dark-matter haloes with virial masses in the range 109 < Mvir/M⊙ < 1011. We are able to probe DLAs at high resolution, irrespective of their masses, by using a range of simulations of differing volumes. The fully constrained feedback prescription in use causes the majority of DLA haloes to form stars at a very low rate, accounting for the low metallicities. It is also responsible for the mass–metallicity relation which appears essential for reproducing the velocity–metallicity correlation. By z= 0, the majority of the z= 3 neutral gas forming the DLAs has been converted into stars, in agreement with rough physical expectations.
REFERENCES
- Black J. H., 1987, in D. J. Hollenbach, H. A. Thronson, eds, Astrophys. Space Sci. Library Vol. 134, Interstellar Processes. Springer, Dordrecht , p. 731
- Bouché N., 2008, MNRAS, 389, L18
- Brooks A. M., Governato F., Booth C. M., Willman B., Gardner J. P., Wadsley J., Stinson G., Quinn T., 2007, ApJ, 655, L17 (B07)
- Cen R., Ostriker J. P., Prochaska J. X., Wolfe A. M., 2003, ApJ, 598, 741
- Ceverino D., Klypin A., 2007, ApJ, submitted (arXiv:0712.3285)
- Chevalier R. A., 1974, ApJ, 188, 501
- Cooke J., Wolfe A. M., Gawiser E., Prochaska J. X., 2006, ApJ, 652, 994
- Dekel A., Birnboim Y., 2006, MNRAS, 368, 2
- Dunkley J. et al. 2008, ApJS, submitted
- Efstathiou G., 1992, MNRAS, 256, 43 p
- Eke V. R., Navarro J. F., Steinmetz M., 2001, ApJ, 554, 114
- Ellison S. L., Yan L., Hook I. M., Pettini M., Wall J. V., Shaver P., 2001, A&A, 379, 393
- Ellison S., York B., Pettini M., Nissim K. 2008, MNRAS, 388, 1349
-
Erb D. K.,
Shapley A. E.,
Pettini M.,
Steidel C. C.,
Reddy N. A.,
Adelberger K. L., 2006, ApJ, 644, 813
10.1111/j.1365-2966.2007.11847.x Google Scholar
- Ferland G. J., Korista K. T., Verner D. A., Ferguson J. W., Kingdon J. B., Verner E. M., 1998, PASP, 110, 761
- Fox A. J., Petitjean P., Ledoux C., Srianand R., 2007, A&A, 465, 171
- Gardner J. P., Katz N., Hernquist L., Weinberg D. H., 1997a, ApJ, 484, 31
- Gardner J. P., Katz N., Weinberg D. H., Hernquist L., 1997b, ApJ, 486, 42
- Gardner J. P., Katz N., Hernquist L., Weinberg D. H., 2001, ApJ, 559, 131
- Gill S. P. D., Knebe A., Gibson B. K., 2004, MNRAS, 351, 399
- Governato F., Willman B., Mayer L., Brooks A., Stinson G., Valenzuela O., Wadsley J., Quinn T., 2007, MNRAS, 374, 1479 (G07)
- Governato F., Mayer L., Brook C., 2008, preprint (arXiv:0801.1707) (G08)
- Haardt F., Madau P., 1996, ApJ, 461, 20
- Haehnelt M. G., Steinmetz M., Rauch M., 1998, ApJ, 495, 647
-
Heiles C.,
Crutcher R., 2005, in
R. Wielebinski,
R. Beck, eds, Lecture Notes in Physics. Vol. 664, Cosmic Magnetic Fields. Springer-Verlag,
Berlin
, p. 137
10.1007/3540313966_7 Google Scholar
- Iliev I. T. et al., 2006, MNRAS, 371, 1057
- Isobe T., Feigelson E. D., Akritas M. G., Babu G. J., 1990, ApJ, 364, 104
- Jakobsson P. et al., 2006, A&A, 460, L13
- Johansson P. H., Efstathiou G., 2006, MNRAS, 371, 1519
- Jorgenson R. A., Wolfe A. M., Prochaska J. X., Lu L., Howk J. C., Cooke J., Gawiser E., Gelino D. M., 2006, ApJ, 646, 730
- Katz N., 1992, ApJ, 391, 502
- Katz N., White S. D. M., 1993, ApJ, 412, 455
- Katz N., Weinberg D. H., Hernquist L., 1996a, ApJS, 105, 19
- Katz N., Weinberg D. H., Hernquist L., Miralda-Escude J., 1996b, ApJ, 457, L57
- Kauffmann G., 1996, MNRAS, 281, 475
- Kaufmann T., Mayer L., Wadsley J., Stadel J., Moore B., 2007, MNRAS, 375, 53
- Kennicutt R. C. Jr, 1998a, ARA&A, 36, 189
- Kennicutt R. C. Jr, 1998b, ApJ, 498, 541
- Khare P., Kulkarni V. P., Péroux C., York D. G., Lauroesch J. T., Meiring J. D., 2007, A&A, 464, 487
-
Knebe A.,
Green A.,
Binney J., 2001, MNRAS, 325, 845
10.1046/j.1365-8711.2001.04532.x Google Scholar
- Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545
- Ledoux C., Petitjean P., Bergeron J., Wampler E. J., Srianand R., 1998, A&A, 337, 51
- Ledoux C., Bergeron J., Petitjean P., 2002, A&A, 385, 802
-
Ledoux C.,
Petitjean P.,
Srianand R., 2003, MNRAS, 346, 209
10.1046/j.1365-2966.2003.07082.x Google Scholar
- Ledoux C., Petitjean P., Fynbo J. P. U., Møller P., Srianand R., 2006, A&A, 457, 71
- Lee H., Skillman E. D., Cannon J. M., Jackson D. C., Gehrz R. D., Polomski E. F., Woodward C. E., 2006, ApJ, 647, 970
- Lodders K., 2003, ApJ, 591, 1220
- McKee C. F., Ostriker J. P., 1977, ApJ, 218, 148
-
Maller A. H.,
Prochaska J. X.,
Somerville R. S.,
Primack J. R., 2001, MNRAS, 326, 1475
10.1111/j.1365-2966.2001.04697.x Google Scholar
- Miralda-Escudé J., 2005, ApJ, 620, L91
- Naab T., Johansson P. H., Ostriker J. P., Efstathiou G., 2007, ApJ, 658, 710
- Nagamine K., Springel V., Hernquist L., 2004a, MNRAS, 348, 421
- Nagamine K., Springel V., Hernquist L., 2004b, MNRAS, 348, 435
- Nagamine K., Wolfe A. M., Hernquist L., Springel V., 2007, ApJ, 660, 945
- Navarro J. F., Steinmetz M., 2000, ApJ, 538, 477
- Osterbrock D. E., Ferland G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books, Sausalito, CA
- Ostriker J. P., McKee C. F., 1988, Rev. Modern Phys., 60, 1
- Pettini M., 2006, The Fabulous Destiny of Galaxies: Bridging Past and Present. Frontier Group, Paris
- Pontzen A., Pettini M., 2008, MNRAS, submitted
- Prochaska J. X., Wolfe A. M., 1997, ApJ, 487, 73
- Prochaska J. X., Wolfe A. M., 1998, ApJ, 507, 113
- Prochaska J. X., Wolfe A. M., 2001, ApJ, 560, L33
- Prochaska J. X., Gawiser E., Wolfe A. M., Castro S., Djorgovski S. G., 2003, ApJ, 595, L9
- Prochaska J. X., Herbert-Fort S., Wolfe A. M., 2005, ApJ, 635, 123
- Prochaska J. X., Wolfe A. M., Howk J. C., Gawiser E., Burles S. M., Cooke J., 2007, ApJS, 171, 29
- Prochaska J. X., Chen H.-W., Wolfe A. M., Dessauges-Zavadsky M., Bloom J. S., 2008, ApJ, 672, 59
- Quinn T., Katz N., Efstathiou G., 1996, MNRAS, 278, L49
- Raiteri C. M., Villata M., Navarro J. F., 1996, A&A, 315, 105
- Razoumov A. O., Cardall C. Y., 2005, MNRAS, 362, 1413
- Razoumov A. O., Norman M. L., Prochaska J. X., Wolfe A. M., 2006, ApJ, 645, 55 (R06)
- Razoumov A. O., Norman M. L., Prochaska J. X., Sommer-Larsen J., Wolfe A. M., Yang Y.-J., 2008, ApJ, 683, 149 (R08)
- Reddy N. A., Steidel C. C., Pettini M., Adelberger K. L., Shapley A. E., Erb D. K., Dickinson M., 2008, ApJS, 175, 48
- Reed D., Bower R., Frenk C., Jenkins A., Theuns T., 2007, MNRAS, 374, 2
- Rees M. J., 1986, MNRAS, 218, 25 p
- Savaglio S. et al., 2005, ApJ, 635, 260
- Schaye J., 2001, ApJ, 562, L95
- Schaye J., 2006, ApJ, 643, 59
- Schmidt M., 1959, ApJ, 129, 243
- Shapley A. E., Steidel C. C., Adelberger K. L., Dickinson M., Giavalisco M., Pettini M., 2001, ApJ, 562, 95
- Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
- Spergel D. N. et al., 2007, ApJS, 170, 377
-
Springel V.,
Hernquist L., 2003, MNRAS, 339, 289
10.1046/j.1365-8711.2003.06206.x Google Scholar
- Springel V. et al., 2005, Nat, 435, 629
-
Srianand R.,
Petitjean P.,
Ledoux C.,
Ferland G.,
Shaw G., 2005, MNRAS, 362, 549
10.1111/j.1365-2966.2005.09324.x Google Scholar
- Stinson G., Seth A., Katz N., Wadsley J., Governato F., Quinn T., 2006, MNRAS, 373, 1074 (S06)
- Thacker R. J., Couchman H. M. P., 2000, ApJ, 545, 728
- Thielemann F.-K., Nomoto K., Yokoi K., 1986, A&A, 158, 17
- Tremonti C. A. et al., 2004, ApJ, 613, 898
- Tytler D., 1987, ApJ, 321, 49
- Wadsley J. W., Stadel J., Quinn T., 2004, New Astron., 9, 137
- Weaver T. A., Woosley S. E., 1993, Phys. Rep., 227, 65
- Wolfe A. M., Turnshek D. A., Smith H. E., Cohen R. D., 1986, ApJS, 61, 249
- Wolfe A. M., Prochaska J. X., Gawiser E., 2003, ApJ, 593, 215
- Wolfe A. M., Gawiser E., Prochaska J. X., 2005, ARA&A, 43, 861
- Wolfe A. M., Prochaska J. X., Jorgenson R. A., Rafelski M., 2008, ApJ, 681, 881
- Zwaan M. A., Van Der Hulst J. M., Briggs F. H., Verheijen M. A. W., Ryan-Weber E. V., 2005, MNRAS, 364, 1467