Amount of intergalactic dust: constraints from distant supernovae and the thermal history of the intergalactic medium
Corresponding Author
Akio K. Inoue
Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
★ E-mail: [email protected]
†JSPS Research Fellow
Search for more papers by this authorHideyuki Kamaya
Department of Astronomy, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Search for more papers by this authorCorresponding Author
Akio K. Inoue
Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
★ E-mail: [email protected]
†JSPS Research Fellow
Search for more papers by this authorHideyuki Kamaya
Department of Astronomy, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Search for more papers by this authorABSTRACT
In this paper we examine the allowed amount of intergalactic (IG) dust, which is constrained by extinction and reddening of distant Type Ia supernovae (SNe Ia) and the thermal history of the intergalactic medium (IGM) affected by dust photoelectric heating. Based on the observational cosmic star formation history, we find an upper bound of χ, the mass ratio of the IG dust to the total metal in the Universe, as χ≲ 0.1 for 10 Å ≲a≲ 0.1 μm and χ≲ 0.1(a/0.1 μm) for 0.1 ≲a≲ 1 μm, where a is a characteristic grain size of the IG dust. This upper bound of χ∼ 0.1 suggests that the dust-to-metal ratio in the IGM is smaller than the current Galactic value. The corresponding allowed density of the IG dust increases from ∼10−34 g cm−3 at z= 0 to ∼10−33 g cm−3 at z∼ 1, and keeps almost the value toward higher redshift. This causes IG extinction of ≲0.2 mag at the observer's B band for z∼ 1 sources and that of ≲1 mag for higher redshift sources. Furthermore, if E(B–V) ∼ 0.1 mag at the observer's frame against z≳ 1 sources is detected, we can conclude that a typical size of the IG dust is ≲100Å. The signature of the 2175-Å feature of small graphite may be found as a local minimum at z∼ 2.5 in a plot of the observed E(B–V) as a function of the source redshift. Finally, the IGM mean temperature at z≲ 1 can be still higher than 104 K, provided the size of the IG dust is ≲100 Å.
REFERENCES
- Aguirre A., 1999, ApJ, 525, 583
- Aguirre A., Haiman Z., 2000, ApJ, 532, 28
- Aguirre A., Hernquist L., Katz N., Gardner J., Weinberg D., 2001, ApJ, 556, L11
- Aguirre A., Schaye J., Kim T.-S., Theuns T., Rauch M., Sargent, W. L. W., 2004, ApJ, in press (0310664)
-
Barger A. J.,
Cowie L. L.,
Richards E. A., 2000, AJ, 119, 2092
10.1086/301341 Google Scholar
- Bouwens R. J. et al., 2003, ApJ, 595, 589
- Bromm V., Yoshida N., Hernquist L., 2003, ApJ, 596, L135
- Buat V., Boselli A., Gavazzi G., Bonfanti C., 2002, A&A, 383, 801
- Burstein D., Heiles C., 1982, AJ, 87, 1165
- Calzetti D., 2001, PASP, 113, 1449
- Cen R., 1992, ApJS, 78, 341
- Cheng F. H., Gaskell C. M., Koratkar A. P., 1991, ApJ, 370, 487
- Connolly A. J., Szalay A. S., Dickinson M., Subbarao M. U., Brunner R. J., 1997, ApJ, 486, L11
- Cowie L. L, Songaila A., Kim T. S., Hu E. M., 1995, AJ, 109, 1522
- Draine B. T., 1978, ApJS, 36, 595
- Draine B. T., Hao L., 2002, ApJ, 569, 780
- Draine B. T., Lee H. M., 1984, ApJ, 285, 89
- Draine B. T., Sutin B., 1987, ApJ, 320, 803
- Dunne L., Eales S., Ivison R., Morgan H., Edmunds M., 2003, Nat, 424, 285
- Elfgren E., Désert F.-X., 2003, A&A, submitted (0310135)
- Ferrara A., Aiello S., Ferrini F., Barsella B., 1990, A&A, 240, 259
- Ferrara A., Ferrini F., Barsella B., Franco J., 1991, ApJ, 381, 137
- Ferrara A., Nath B., Sethi S. K., Shchekinov Y., 1999, MNRAS, 303, 301
- Gallego J., Zamorano J., Aragon-Salamanca A., Rego M., 1995, ApJ, 455, L1
- Giavalisco M. et al., 2004, ApJ, 600, L103
- Goobar A., Bergstöm L., Mörtsell E., 2002, A&A, 384, 1
- Haardt F., Madau P., 1996, ApJ, 461, 20
- Hui L., Gnedin N. Y., 1997, MNRAS, 292, 27
- Inoue A. K., 2003, PASJ, 55, 901
- Inoue A. K., Kamaya H., 2003, MNRAS, 341, L7
- Iwata I., Ohta K., Tamura N., Ando M., Wada S., Watanabe C., Akiyama, M., Aoki K., 2003, PASJ, 55, 415
- Jaffe A. H. et al., 2001, Phys. Rev. Lett., 86, 3475
- Kozasa T., Hasegawa H., 1987, Prog. Theor. Phys., 77, 1402
- Laor A., Draine B. T., 1993, ApJ, 402, 441
-
Lilly S. J.,
Le Fevre O.,
Hammer F.,
Crampton D., 1996, ApJ, 461, L1
10.1086/177034 Google Scholar
- Loeb A., Haiman Z., 1997, ApJ, 490, 571
- Madau P., Ferguson H. C., Dickinson M. E., Giavalisco M., Steidel, C. C., Fruchter A., 1996, MNRAS, 283, 1388
- Madau P., Pozzetti L., Dickinson M., 1998, ApJ, 498, 106
- Morgan H. L., Dunne L., Eales S., Ivison R., Edmunds, M. G., 2003, ApJ, 597, L33
-
Mörtsell E.,
Goobar A., 2003, JCAP, 9, 9
10.1088/1475-7516/2003/09/009 Google Scholar
- Nath B. B., Sethi S. K., Shchekinov Y., 1999, MNRAS, 303, 1
- Nozawa T., Kozasa T., Umeda H., Maeda K., Nomoto K., 2003, ApJ, 598, 785
-
Osterbrock D. E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. University Science Books,
Mill Valley
,
CA
10.1007/978-94-009-0963-2 Google Scholar
- Paerels F., Petric A., Telis G., Helfand D. J., 2002, BAAS, 201, 97.03
- Pagel B. E. J., 1997, Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge Univ. Press, Cambridge
-
Percival W. J.
et al., 2001, MNRAS, 327, 1297
10.1046/j.1365-8711.2001.04827.x Google Scholar
- Perlmutter S. et al., 1999, ApJ, 517, 565
- Perna R., Aguirre A., 2000, ApJ, 543, 56
- Pryke C., Halverson N. W., Leitch E. M., Kovac J., Carlstrom J. E., Holzapfel W. L., Dragovan M., 2002, ApJ, 568, 46
-
Riess A. G.
et al., 1998, AJ, 116, 1009
10.1111/j.1365-2966.2004.07832.x Google Scholar
- Riess A. G. et al., 2001, ApJ, 560, 49
- Rowan-Robinson M., Negroponte J., Silk J., 1979, Nat, 281, 635
- Schaye J., Theuns T., Rauch M., Efstathiou G., Sargent, W. L. W., 2000, MNRAS, 318, 817
- Schaye J., Aguirre A., Kim T.-S., Theuns T., Rauch M., Sargent W. L. W., 2003, ApJ, 596, 768
- Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
- Schneider R., Ferrara A., Salvaterra R., 2003, MNRAS, submitted (0307087)
- Scott J., Bechtold J., Morita M., Dobrzycki A., Kulkarni V. P., 2002, ApJ, 571, 665
- Songaila A., 2001, ApJ, 561, L153
- Spergel D. et al., 2003, ApJS, 148, 175
- Spitzer L., 1978, Physical Processes in the Interstellar Medium. Wiley, New York
- Springel V., Hernquist L., 2003, MNRAS, 339, 312
- Steidel C. C., Adelberger K. L., Giavalisco M., Dickinson M., Pettini M., 1999, ApJ, 519, 1
- Sutherland R. S., Dopita M. A., 1993, ApJS, 88, 253
- Takase B., 1972, PASJ, 24, 295
- Telfer R. C., Kriss G. A., Zheng W., Davidsen A. F., Tytler, D., 2002, ApJ, 579, 500
- Telis G. A., Petric A., Paerels F., Helfand D. J., 2002, BAAS, 201, 79.12
- Theuns T., Leonard A., Efstathiou G., Pearce F. R., Thomas P. A., 1998, MNRAS, 301, 478
- Theuns T., Schaye J., Zaroubi S., Kim T.-S., Tzanavaris P., Carswell B., 2002a, ApJ, 567, L103
- Theuns T., Bernardi M., Frieman J., Hewett P., Schaye J., Sheth R. K., Subbarao M., 2002b, ApJ, 574, L111
- Todini P., Ferrara A., 2001, MNRAS, 325, 726
- Tresse L., Maddox S. J., 1998, ApJ, 495, 691
-
Weingartner J. C.,
Draine B. T., 2001a, ApJ, 548, 296
10.1086/318651 Google Scholar
- Weingartner J. C., Draine B. T., 2001b, ApJS, 134, 263
- Whittet D. C. B., 2003, Dust in the Galactic Environment, 2nd edn. Inst. Phys. , Bristol
- Windt D. L., 2002, ApJ, 564, L61
- Wright E. L., 1981, ApJ, 250, 1
- Zheng W., Kriss G. A., Telfer R. C., Grimes J. P., Davidsen, A. F., 1997, ApJ, 475, 469