A hierarchy of voids: much ado about nothing
Corresponding Author
Ravi K. Sheth
Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St., Pittsburgh, PA 15260, USA
★ E-mail: [email protected] (RKS); [email protected] (RvdW)
†William Shakespeare, 1598, Much Ado About Nothing
Search for more papers by this authorCorresponding Author
Rien Van De Weygaert
Kapteyn Institute, University of Groningen, PO Box 800, 9700 AV Groningen, the Netherlands
★ E-mail: [email protected] (RKS); [email protected] (RvdW)
†William Shakespeare, 1598, Much Ado About Nothing
Search for more papers by this authorCorresponding Author
Ravi K. Sheth
Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St., Pittsburgh, PA 15260, USA
★ E-mail: [email protected] (RKS); [email protected] (RvdW)
†William Shakespeare, 1598, Much Ado About Nothing
Search for more papers by this authorCorresponding Author
Rien Van De Weygaert
Kapteyn Institute, University of Groningen, PO Box 800, 9700 AV Groningen, the Netherlands
★ E-mail: [email protected] (RKS); [email protected] (RvdW)
†William Shakespeare, 1598, Much Ado About Nothing
Search for more papers by this authorABSTRACT
We present a model for the distribution of void sizes and its evolution in the context of hierarchical scenarios of gravitational structure formation. We find that at any cosmic epoch the voids have a size distribution that is well-peaked about a characteristic void size that evolves self-similarly in time. This is in distinct contrast to the distribution of virialized halo masses, which does not have a small-scale cut-off.
In our model, the fate of voids is ruled by two processes. The first process affects those voids which are embedded in larger underdense regions: the evolution is effectively one in which a larger void is made up by the mergers of smaller voids, and is analogous to how massive clusters form from the mergers of less massive progenitors. The second process is unique to voids, and occurs to voids that happen to be embedded within a larger-scale overdensity: these voids get squeezed out of existence as the overdensity collapses around them. It is this second process which produces the cut-off at small scales.
In the excursion set formulation of cluster abundance and evolution, the solution of the cloud-in-cloud problem, i.e. counting as clusters only those objects which are not embedded in larger clusters, requires the study of random walks crossing one barrier. We show that a similar formulation of void evolution requires the study of a two-barrier problem: one barrier is required to account for voids-in-voids, and the other for voids-in-clouds. Thus, in our model, the void size distribution is a function of two parameters, one of which reflects the dynamics of void formation, and the other the formation of collapsed objects.
REFERENCES
-
Abazajian K.
et al. (The SDSS collaboration), 2003, AJ, 126, 2081
10.1086/378165 Google Scholar
- Appel L., Jones B. J. T., 1990, MNRAS, 245, 522
-
Arbabi-Bidgoli S.,
Müller V., 2002, MNRAS, 332, 205
10.1046/j.1365-8711.2002.05296.x Google Scholar
- Bardeen J. M., Bond J. R., Kaiser N., Szalay A., 1986, ApJ, 304, 15 (BBKS)
-
Benson A. J.,
Hoyle F.,
Torres F.,
Vogeley M. S., 2003, MNRAS, 340, 160
10.1046/j.1365-8711.2003.06281.x Google Scholar
- Bertschinger E., 1983, ApJ, 268, 17
- Bertschinger E., 1985, ApJS, 58, 1
- Bertschinger E., Jain B., 1994, ApJ, 431, 486
- Bertschinger E., Dekel A., Faber S. M., Dressler A., Burstein D., 1990, ApJ, 364, 370
- Blumenthal G. R., Da Costa L., Goldwirth D. S., Lecar M., Piran T., 1992, ApJ, 388, 234
- Bond J. R., Myers S., 1996, ApJS, 103, 1
- Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
- Bond J. R., Kofman L., Pogosyan D., 1996, Nat, 380, 603
- Bothun G. D., Geller M. J., Kurtz M. J., Huchra J. P., Schild R. E., 1992, ApJ, 395, 347
- Cole S., Kaiser N., 1989, MNRAS, 237, 1127
- Colless et al. ( The 2dFGRS team), 2003, preprint (0306581)
- Cooray A., Sheth R. K., 2002, Phys. Rep., 372, 1
- Da Costa L. N., 1993, in F. R. Bouchet, M. Lachièze-Rey, eds, Proc. 9th IAP Astrophysics Meeting, Cosmic Velocity Fields. Editions Frontières, Gif-sur-Yvette , p. 475
- Dekel A., Rees M., 1994, ApJ, 422, L1
- De Lapparent V., Geller M. J., Huchra J. P., 1986, ApJ, 302, L1
- Dubinski J., Da Costa L. N., Goldwirth D. S., Lecar M., Piran T., 1993, ApJ, 410, 458
- Eisenstein D., Loeb A., 1995, ApJ, 439, 520
- El-Ad H., Piran T., 1997, ApJ, 491, 421
- El-Ad H., Piran T., 2000, MNRAS, 313, 553
- El-Ad H., Piran T., Da Costa L. N., 1996, ApJ, 462, L13
- Epstein R. A., 1983, MNRAS, 205, 207
- Fillmore J. A., Goldreich P., 1984, ApJ, 281, 9
- Friedmann Y., Piran T., 2001, ApJ, 548, 1
- Geller M., Huchra J., 1989, Sci, 246, 897
- Goldberg D. M., Vogeley M. S., 2003, preprint (0307191)
- Goldwirth D. S., Da Costa L. N., Van De Weygaert R., 1995, MNRAS, 275, 1185
- Gottlöber S., Łokas E., Klypin A., Hoffman Y., 2003, MNRAS, 344, 715
- Gunn J. E., Gott J. R., 1972, ApJ, 176, 1
- Hausman M. A., Olson D. W., Roth B. D., 1983, ApJ, 270, 351
- Heavens A., Peacock J., 1988, MNRAS, 232, 339
- Hoffman G. L., Salpeter E. E., Wasserman I., 1983, ApJ, 268, 527
- Hoffman Y., Shaham J., 1982, ApJ, 262, L23
- Hoffman Y., Silk J., Wyse R. F. G., 1992, ApJ, 388, L13
- Hoyle F., Vogeley M., 2002, ApJ, 566, 641
- Icke V., 1972, PhD thesis, Leiden Univ.
- Icke V., 1973, A&A, 27, 1
- Icke V., 1984, MNRAS, 206, 1
- Kauffmann G., Fairall A. P., 1991, MNRAS, 248, 313
- Kofman L., Pogosyan D. Yu., Shandarin S. F., 1990, MNRAS, 242, 200
- Lacey C., Cole S., 1993, MNRAS, 262, 627
- Lilje P. B., Lahav O., 1991, ApJ, 374, 29
- Lin C. C., Mestel L., Shu F. H., 1965, ApJ, 142, 1431
- Little B., Weinberg D. H., 1994, MNRAS, 267, 605
- Mathis H., White S. D. M., 2002, MNRAS, 337, 1993
- Mo H. J., White S. D. M., 1996, MNRAS, 282, 347
- Mo H. J., Jing Y., White S. D. M., 1997, MNRAS, 284, 189
- Monaco P. L., 1997, MNRAS, 287, 753
- Neyman J., Scott E. L., 1952, ApJ, 116, 144
- Novikov D., Colombi S., Doré, 2003, MNRAS, submitted (0307003)
- Okabe A., Boots B., Sugihara K., Nok Chiu S., 2000, Spatial Tessellations, Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester
- Peebles P. J. E., 1980, The Large Scale Structure in The Universe. Princeton Univ. Press, Princeton , NJ
- Peebles P. J. E, 1982, ApJ, 257, 428
- Peebles P. J. E., 2001, ApJ, 557, 495
- Plionis M., Basilakos S., 2002, MNRAS, 330, 399
- Press W., Schechter P., 1974, ApJ, 187, 425
- Regös E., Geller M., 1991, ApJ, 377, 14
- Rojas R. R., Vogeley M. S., Hoyle F., Brinkmann J., 2003, preprint (0307274)
- Sahni V., Sathyaprakash B. S., Shandarin S. F., 1994, ApJ, 431, 20
- Scherrer R. J., Bertschinger E., 1991, ApJ, 381, 349
-
Schücker P.,
Böhringer H.,
Arzner K.,
Reiprich T. H., 2001, A&A, 370, 715
10.1051/0004-6361:20010282 Google Scholar
- Shandarin S. F., Zel'dovich Ya. B., 1989, Rev. Mod. Phys., 61, 185
- Sheth R. K., 1998, MNRAS, 300, 1057
- Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
- Sheth R. K., Tormen G., 2002, MNRAS, 329, 61
- Sheth R. K., Mo H., Tormen G., 2001, MNRAS, 323, 1
- Strauss M., Willick J., 1995, Phys. Rep., 261, 271
- Suto Y., Sato K., Sato H., 1984, Prog. Theor. Phys., 71, 938
- Szomoru A., Van Gorkom J., Gregg M. D., Strauss M. A., 1996, AJ, 111, 2150
- Van De Weygaert R., 1991, PhD thesis, Leiden Univ.
- Van De Weygaert R., 2002, in M. Plionis, S. Cotsakis, eds, Astrophysics and Space Science Library, Vol. 276, Proc. 2nd Hellenic Cosmology Workshop. Kluwer, Dordrecht , pp. 119–259
- Van De Weygaert R., Bertschinger E., 1996, MNRAS, 281, 84
- Van De Weygaert R., Icke V., 1989, A&A, 213, 1
- Van De Weygaert R., Van Kampen E., 1993, MNRAS, 263, 481
- Voronoi G., 1908, J. Reine Angew. Math., 134, 198
- White S. D. M., Silk J., 1979, ApJ, 231, 1
- Zehavi E. et al., 2002, ApJ, 571, 172