Historical biogeography of the coffee family (Rubiaceae, Gentianales) in Madagascar: case studies from the tribes Knoxieae, Naucleeae, Paederieae and Vanguerieae
Corresponding Author
N. Wikström
N. Wikström, Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden.E-mail: [email protected]Search for more papers by this authorM. Avino
Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorS. G. Razafimandimbison
Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorB. Bremer
Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
N. Wikström
N. Wikström, Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden.E-mail: [email protected]Search for more papers by this authorM. Avino
Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorS. G. Razafimandimbison
Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorB. Bremer
Bergius Foundation, Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
Search for more papers by this authorThis paper is an additional contribution to the Special Issue that arose from the symposium Evolutionary islands: 150 years after Darwin (http://science.naturalis.nl/darwin2009), held from 11 to 13 February 2009 at the Museum Naturalis, Leiden, The Netherlands. The theme of the symposium was to explore the contribution of islands to our understanding of evolutionary biology and to analyse the role of island biological processes in a world in which the insularity of island and mainland ecosystems is being drastically altered.
Abstract
Aim In Madagascar the family Rubiaceae includes an estimated 650 species representing 95 genera. As many as 98% of the species and 30% of the genera are endemic. Several factors make the Rubiaceae a model system for developing an understanding of the origins of the Malagasy flora. Ancestral area distributions are explicitly reconstructed for four tribes (Knoxieae, Naucleeae, Paederieae and Vanguerieae) with the aim of understanding how many times, and from where, these groups have originated in Madagascar.
Location Indian Ocean Basin, with a focus on Madagascar.
Methods Bayesian phylogenetic analyses are conducted on the four tribes. The results are used for reconstructing ancestral areas using dispersal–vicariance analyses. Phylogenetic uncertainties in the reconstructions are accounted for by conducting all analyses on the posterior distribution from the analyses.
Results Altogether, 11 arrivals in Madagascar (one in Paederieae, five in Knoxieae, three in Vanguerieae, and two in Naucleeae) are reconstructed. The most common pattern is a dispersal event (followed by vicariance) from Eastern Tropical Africa. The Naucleeae and Paederieae in Madagascar differ and originate from Asia. Numerous out-of-Madagascar dispersals, mainly in the dioecious Vanguerieae, are reconstructed.
Main conclusions The four tribes arrived several times in Madagascar via dispersal events from Eastern Tropical Africa, Southern Africa and Tropical Asia. The presence of monophyletic groups that include a number of species only found in Madagascar indicates that much endemism in the tribes results from speciation events occurring well after their arrival in Madagascar. Madagascar is the source of origin for almost all Rubiaceae found on the neighbouring islands of the Comoros, Mascarenes and Seychelles.
Supporting Information
Appendix S1 List of investigated taxa and GenBank accession numbers for sequences used in the analyses.
Appendix S2 Bayesian posterior probabilities and reconstructed ancestral areas for all nodes.
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
JBI_2258_sm_AppS1.pdf144 KB | Supporting info item |
JBI_2258_sm_AppS2.pdf65.9 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alejandro, G.D., Razafimandimbison, S.G. & Liede-Schumann, S. (2005) Polyphyly of Mussaenda inferred from ITS and trnT-F data and its implication for generic limits in Mussaendeae (Rubiaceae). American Journal of Botany, 92, 544–557.
- Alfaro, M.E., Zoller, S. & Lutzoni, F. (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution, 20, 255–266.
- Backlund, M., Bremer, B. & Thulin, M. (2007) Paraphyly of Paederieae, recognition of Putorieae and expansion of Plocama (Rubiaceae–Rubioideae). Taxon, 56, 315–328.
- Baldwin, B.G. & Markos, S. (1998) Phylogenetic utility of external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution, 10, 449–463.
- Bremer, B. (2009) A review of molecular phylogenetic studies of Rubiaceae. Annals of the Missouri Botanical Garden, 96, 4–26.
- Bremer, B. & Eriksson, T. (2009) Timetree of Rubiaceae: phylogeny and dating the family, subfamilies and tribes. International Journal of Plant Sciences, 170, 766–793.
- Bremer, B., Bremer, K., Heidari, N., Erixon, P., Olmstead, R.G., Anderberg, A.A., Källersjö, M. & Barkhordarian, E. (2002) Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution, 24, 274–301.
- Bremer, K., Friis, E.-M. & Bremer, B. (2004) Molecular phylogenetic dating of asterid flowering plants shows Early Cretaceous diversification. Systematic Biology, 53, 496–505.
-
Bridson, D.M. (1987) Studies in African Rubiaceae–Vanguerieae: a new circumscription of Pyrostria and a new subgen.
Bullockia. Kew Bulletin, 42, 611–639.
10.2307/4110068 Google Scholar
-
Bridson, D.M. (1992) The genus Canthium (Rubiaceae – Vanguerieae) in tropical Africa.
Kew Bulletin, 47, 353–401.
10.2307/4110569 Google Scholar
- Brummit, R.K. (2001) World geographic scheme for recording plant distributions, 2nd edn. Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh.
- Cadet, T. (1977) La végétation de l’île de la Réunion: étude phytoécologique et phytosociologique. PhD Thesis, Université Aix Marseille III, Aix en Provence.
- Case, J.A. (2002) A new biogeographic model for dispersal of Late Cretaceous vertebrates into Madagascar and India. Journal of Vertebrate Paleontology, 22(Suppl. 3), 42A.
- Chevet, E., LeMaître, G. & Katinka, M.D. (1995) Low concentration of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Research, 23, 3343–3344.
- Crane, P.R., Friis, E.-M. & Pedersen, K.R. (1995) The origin and early diversification of angiosperms. Nature, 374, 27–33.
- Davis, A. & Bridson, D. (2003a) Vangueria and related genera (tribe Vanguerieae). The natural history of Madagascar (ed. by S.M. Goodman and J.P. Benstead), pp. 447–448. University of Chicago Press, Chicago.
- Davis, A. & Bridson, D. (2003b) Introduction to the Rubiaceae. The natural history of Madagascar (ed. by S.M. Goodman and J.P. Benstead), pp. 431–434. University of Chicago Press, Chicago.
- De Block, P. (2003) Paederia (tribe Paederieae). The natural history of Madagascar (ed. by S.M. Goodman and J.P. Benstead), pp. 444–445. University of Chicago Press, Chicago.
- Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.
- Gautier, L. & Goodman, S.M. (2003) Introduction to the flora of Madagascar. The natural history of Madagascar (ed. by S.M. Goodman and J.P. Benstead), pp. 229–250. University of Chicago Press, Chicago.
- Gillespie, R.G. & Roderick, G.K. (2002) Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology, 47, 595–632.
-
S.M. Goodman &
J.P. Benstead (eds) (2003) The natural history of Madagascar. University of Chicago Press, Chicago.
10.7208/chicago/9780226337609.001.0001 Google Scholar
- Goodman, S.M. & Benstead, J.P. (2005) Updated estimates of biotic diversity and endemism for Madagascar. Oryx, 39, 73–77.
- Govaerts, R., Andersson, L., Robbrecht, E., Bridson, D., Davis, A., Schanzer, I. & Sonke, B. (2008) World checklist of Rubiaceae. The Board of Trustees of the Royal Botanic Gardens, Kew. Available at: http://apps.kew.org/wcsp (accessed 1 December 2008).
- Groombridge, B. & Jenkins, M.B. (2002) World atlas of biodiversity: Earth’s living resources in the 21st century. University of California Press, Berkeley.
- Grubb, P.J. (2003) Interpreting some outstanding features of the flora and vegetation of Madagascar. Perspectives in Plant Ecology, Evolution and Systematics, 6, 125–146.
- Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.
- Janssen, T., Bystriakova, N., Rakotondrainibe, F., Coomes, D., Labat, J.-N. & Schneider, H. (2008) Neoendemism in Madagascan scaly tree ferns result from recent, coincident diversification bursts. Evolution, 62, 1876–1889.
- Kårehed, J. & Bremer, B. (2007) The systematics of Knoxieae (Rubiaceae) – molecular data and their taxonomic consequences. Taxon, 56, 1051–1076.
- Kier, G. & Barthlott, W. (2001) Measuring and mapping endemism and species richness: a new methodological approach and its implications on the flora of Africa. Biodiversity and Conservation, 10, 1513–1529.
- Kier, G., Kreft, H., Lee, T.M., Jetz, W., Ibisch, P.L., Nowicki, C., Mutke, J. & Barthlott, W. (2009) A global assessment of endemism and species richness across islands and mainland regions. Proceedings of the National Academy of Sciences USA, 106, 9322–9327.
- Klaus, S., Schubart, C.D. & Brandis, D. (2006) Phylogeny, biogeography and a new taxonomy for the Gecarcinucoidea Rathbun, 1904 (Decapoda: Brachyura). Organisms, Diversity and Evolution, 6, 199–217.
- Koopman, M.M. & Baum, D.A. (2008) Phylogeny and biogeography of tribe Hibisceae (Malvaceae) on Madagascar. Systematic Botany, 33, 364–374.
- Kulju, K.K.M., Sierra, S.E.C., Draisma, S.G.A., Samuel, R. & van Welzen, P.C. (2007) Molecular phylogeny of Macaranga, Mallotus, and related genera (Euphorbiaceae s.s.): insights from plastid and nuclear DNA sequence data. American Journal of Botany, 94, 1726–1743.
- Lantz, H. & Bremer, B. (2004) Phylogeny inferred from morphology and DNA data: characterizing well-supported groups in Vanguerieae (Rubiaceae). Botanical Journal of the Linnean Society, 146, 257–283.
- Lantz, H. & Bremer, B. (2005) Phylogeny of the complex Vanguerieae (Rubiaceae) genera Fadogia, Rytigynia, and Vangueria with close relatives and a new circumscription of Vangueria. Plant Systematics and Evolution, 253, 159–183.
- Lantz, H., Andreasen, K. & Bremer, B. (2002) Nuclear rDNA ITS data used to construct the first phylogeny of Vanguerieae (Rubiaceae). Plant Systematics and Evolution, 230, 173–187.
- Larget, B. & Simon, D.L. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16, 750–759.
- Leroy, J.F. (1978) Composition, origin, and affinities of the Madagascan vascular flora. Annals of the Missouri Botanical Garden, 65, 535–589.
-
Linder, H.P.,
Verboom, G.A. &
Barker, N.P. (1997) Phylogeny and evolution of the Crinipes group of grasses (Arundinoideae: Poaceae).
Kew Bulletin, 52, 91–110.
10.2307/4117843 Google Scholar
- Magallón, S., Crane, P.R. & Herendeen, P.S. (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Annals of the Missouri Botanical Garden, 86, 297–372.
- Malcomber, S.T. (2002) Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread, morphologically diverse genus. Evolution, 56, 42–57.
- McCall, R. (1997) Implications of recent geological investigations of the Mozambique Channel for the mammalian colonization of Madagascar. Proceedings of the Royal Society B: Biological Sciences, 264, 663–665.
- McKenzie, D.P. & Sclater, J.C. (1973) The evolution of the Indian Ocean. Scientific American, 228, 63–72.
- Micheneau, C., Carlsward, B.S., Fay, M.F., Bytebier, B., Pailler, T. & Chase, M.W. (2008) Phylogenetics and biogeography of Mascarene angraecoid orchids (Vandeae, Orchidaceae). Molecular Phylogenetics and Evolution, 46, 908–922.
- Mouly, A., Razafimandimbison, S.G., Khodabandeh, A. & Bremer, B. (2009) Phylogeny and classification of the species-rich pantropical showy genus Ixora (Rubiaceae-Ixoeae) with indications of geographical monophyletic units and hybrids. American Journal of Botany, 96, 686–706.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.
- Negrón-Ortiz, V. & Watson, L.E. (2002) Molecular phylogeny and biogeography of Erithalis (Rubiaceae), an endemic of the Caribbean basin. Plant Systematics and Evolution, 234, 71–83.
- Noonan, B. & Chippindale, P.T. (2006) Vicariant origin of Malagasy reptiles supports Late Cretaceous Antarctic landbridge. The American Naturalist, 168, 730–741.
- Nylander, J.A.A. (2004) MrAIC.pl. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
- Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P. & Nieves-Aldrey, J.L. (2004) Bayesian phylogenetic analyses of combined data. Systematic Biology, 53, 47–67.
- Nylander, J.A.A., Olsson, U., Alström, P. & Sanmartín, I. (2008) Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Systematic Biology, 57, 257–268.
- Oxelman, B., Lidén, M. & Berglund, D. (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematics and Evolution, 206, 393–410.
- Popp, M. & Oxelman, B. (2001) Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homeologous nuclear DNA sequences. Molecular Phylogenetics and Evolution, 20, 474–481.
- de Queiroz, A. (2005) The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution, 20, 68–73.
- Rage, J.C. (1996) Le peuplement animal de Madagascar: une comosante venue de Laurasie est-elle envisageable? Biogéographie de Madagascar (ed. by W.R. Lourenço), pp. 27–35. ORSTOM, Paris.
- Raven, P.H. & Axelrod, D.I. (1974) Angiosperms biogeography and past continental movements. Annals of the Missouri Botanical Garden, 61, 539–673.
- Raxworthy, C.J., Forstner, M.R.J. & Nussbaum, R.A. (2002) Chameleon radiation by oceanic dispersal. Nature, 415, 784–787.
- Razafimandimbison, S.G. (2003) Breonia and related genera (tribe Naucleeae). The natural history of Madagascar (ed. by S.M. Goodman and J.P. Benstead), pp. 435–436. University of Chicago Press, Chicago.
-
Razafimandimbison, S.G. &
Bremer, B. (2001) Tribal delimitation of Naucleeae (Rubiaceae): inference from molecular and morphological data.
Systematics and Geography of Plants, 71, 515–538.
10.2307/3668697 Google Scholar
- Razafimandimbison, S.G. & Bremer, B. (2002) Phylogeny and classification of Naucleeae s.l. (Rubiaceae) inferred from molecular (ITS, rbcL, and trnT-F) and morphological data. American Journal of Botany, 89, 1027–1041.
- Razafimandimbison, S.G., Lantz, H., Mouly, A. & Bremer, B. (2009) Evolutionary trends, major lineages, and new generic limits in the dioecious group of the tribe Vanguerieae (Rubiaceae): insights into the evolution of functional dioecy. Annals of the Missouri Botanical Garden, 96, 161–181.
- Ree, R.H. & Sanmartín, I. (2009) Prospects and challenges for parametric models in historical biogeographical inference. Journal of Biogeography, 36, 1211–1220.
- Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14.
- Ree, R.H., Moore, B.R., Webb, C.O. & Donoghue, M.J. (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59, 2299–2311.
- Renner, S.S. (2004) Multiple Miocene Melastomataceae dispersal between Madagascar, Africa, and India. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 1485–1494.
- Robbrecht, E. (1988) Tropical woody Rubiaceae. Opera Botanica Belgica, 1, 1–271.
- Robbrecht, E. (1996) Generic distribution patterns in subsaharan African Rubiaceae (Angiospermae). Journal of Biogeography, 23, 311–328.
- Ronquist, F. (1996) DIVA 1.1. User’s manual. Evolutionary Biology Centre, Uppsala University, Uppsala. Available at: http://www.ebc.uu.se/systzoo/research/diva/diva.html (accessed 1 May 2009).
- Ronquist, F. (1997) Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46, 195–203.
- Ronquist, F. (2001) DIVA version 1.2. Computer program for MacOS and Win32. Evolutionary Biology Centre, Uppsala University, Uppsala. Available at: http://www.ebc.uu.se/systzoo/research/diva/diva.html (accessed 20 February 2009).
- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
- Rydin, C., Razafimandimbison, S.G., Khodabandeh, A. & Bremer, B. (2009) Evolutionary relationships in the Spermacoceae alliance (Rubiaceae) using information from six molecular loci: insights into systematic affinities of Neohymenopogon and Mouretia. Taxon, 58, 793–810.
- Sanmartín, I. (2003) Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). Journal of Biogeography, 30, 1883–1897.
- Sanmartín, I., van der Mark, P. & Ronquist, F. (2008) Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. Journal of Biogeography, 35, 428–449.
- Schatz, G.E. (1996) Malagasy/Indo-australo-malesian phytogeographic connections. Biogéographie de Madagascar (ed. by W.R. Lourenço), pp. 73–84. ORSTOM, Paris.
- Schatz, G.E. (2000) Endemism in the Malagasy tree flora. Diversité et endémisme á Madagascar (ed. by W.R. Lourenço and S.M. Goodman), pp. 1–9. Mémoires de la Société de Biogéographie, Paris.
- Schatz, G.E., Lowry, P.P., II, Lescot, M., Wolf, A.E., Andriambololonera, S., Raharimalala, V. & Raharimampionana, J. (1996) Conspectus of the vascular plants of Madagascar: a taxonomic and conservation electronic database. The biodiversity of African plants (ed. by L.J.G. van der Maesen, X.M. van der Burgt and J.M. van Medenbach de Rooy), pp. 10–17. Kluwer Academic, Wageningen.
- Simpson, C.G. (1952) Probabilities of dispersal in geologic time. Bulletin of the American Museum of Natural History, 99, 163–176.
- Staden, R. (1996) The Staden sequence analysis package. Molecular Biotechnology, 5, 233–241.
- van Steenis, C.G.G.J. (1962) The land-bridge theory in botany. Blumea, 11, 235–372.
- Storey, M., Mahoney, J.J., Saunders, A.D., Duncan, R.A., Kelley, S.P. & Coffin, M.F. (1995) Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science, 267, 852–855.
- Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105–1109.
- Trénel, P., Gustafsson, M.H.G., Baker, W.J., Asmussen-Lange, C.B., Dransfield, J. & Borchsenius, F. (2007) Mid-Tertiary dispersal, not Gondwanan vicariance explains distribution patterns in the wax palm subfamily (Ceroxyloideae: Arecaceae). Molecular Phylogenetics and Evolution, 45, 272–288.
- Verdcourt, B. & Bridson, D.M. (1991) Rubiaceae (Part 3). Flora of tropical East Africa (ed. by R.M. Polhill), pp. 749–956. A. A. Balkema, Rotterdam/Brookfield.
- Voelker, G. & Outlaw, R.K. (2008) Establishing a perimeter position: speciation around the Indian Ocean Basin. Journal of Evolutionary Biology, 21, 1779–1788.
- Warren, B.H., Bermingham, E., Prys-Jones, R. & Thebaud, C. (2005) Tracking island colonization history and phenotypic shifts in Indian Ocean bulbuls (Hypsipetes: Pycnonotidae). Biological Journal of the Linnean Society, 85, 271–287.
- Wells, N.A. (2003) Some hypotheses on the Mesozoic and Coenozoic paleoenvironmental history of Madagascar. The natural history of Madagascar (ed. by S.M. Goodman and J.P. Benstead), pp. 16–34. University of Chicago Press, Chicago.
-
White, F. (1993) The AETFAT chorological classification of Africa: history, methods and applications.
Bulletin du Jardin Botanique National de Belgique, 62, 228–281.
10.2307/3668279 Google Scholar
- Whittaker, R.J. & Fernández-Palacios, J.M. (2007) Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford.
- Wikström, N., Savolainen, V. & Chase, M.W. (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 268, 2211–2220.
- Wilmé, L., Goodman, S.M. & Ganzhorn, J.U. (2006) Biogeographic evolution of Madagascar’s microendemic biota. Science, 312, 1063–1065.
- Yoder, A.D. & Nowak, M.D. (2006) Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review in Ecology and Systematics, 37, 405–431.
- Yuan, Y.M., Wohlhauser, S., Möller, M., Klackenberg, J., Callmander, M.W. & Küpper, P. (2005) Phylogeny and biogeography of Exacum (Gentianaceae): a disjunctive distribution in the Indian Ocean basin resulted from long distance dispersal and extensive radiation. Systematic Biology, 54, 21–34.