Modelling vascular plant diversity at the landscape scale using systematic samples
Corresponding Author
Thomas Wohlgemuth
Swiss Federal Research Institute WSL, Birmensdorf
*Thomas Wohlgemuth, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland. E-mail: [email protected]Search for more papers by this authorMichael P. Nobis
Swiss Federal Research Institute WSL, Birmensdorf
Search for more papers by this authorFelix Kienast
Swiss Federal Research Institute WSL, Birmensdorf
Search for more papers by this authorMatthias Plattner
Hintermann and Weber AG, Ecological Consultancy, Planning and Research, Reinach, Switzerland
Search for more papers by this authorCorresponding Author
Thomas Wohlgemuth
Swiss Federal Research Institute WSL, Birmensdorf
*Thomas Wohlgemuth, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland. E-mail: [email protected]Search for more papers by this authorMichael P. Nobis
Swiss Federal Research Institute WSL, Birmensdorf
Search for more papers by this authorFelix Kienast
Swiss Federal Research Institute WSL, Birmensdorf
Search for more papers by this authorMatthias Plattner
Hintermann and Weber AG, Ecological Consultancy, Planning and Research, Reinach, Switzerland
Search for more papers by this authorAbstract
Aim We predict fine-scale species richness patterns at large spatial extents by linking a systematic sample of vascular plants with a multitude of independent environmental descriptors.
Location Switzerland, covering 41,244 km2 in central Europe.
Methods Vascular plant species data were collected along transects of 2500-m length within 1-km2 quadrats on a systematic national grid (n = 354), using a standardized assessment method. Generalized linear models (GLM) were used to correlate species richness of vascular plants per transect (SRt) with three sets of variables: topography, environment and land cover. Regression models were constructed by the following process: reduction of collinearity among variables, model selection based on Akaike’s information criterion (AIC), and the percentage of deviance explained (D2). A synthetic model was then built using the best variables from all three sets of variables. Finally, the best models were used in a predictive mode to generate maps of species richness (SRt) at the landscape scale using the moving window approach based on 1-km2 moving windows with a resolution of 1 ha.
Results The best explanatory model consisted of seven variables including 14 linear and quadratic parameters, and explained 74% of the deviance (D2 = 0.742). Used in a predictive mode, the model generated maps with distinctive horizontal belts of highest species richness at intermediate altitudes along valley slopes. Belts of higher richness were also present along rivers and around large forest patches and larger villages, as well as on mountains.
Main conclusions The approach involved using consistent samples of species linked to information on the environment at a fine scale enabled landscapes to be compared in terms of predicted species richness. The results can therefore be applied to support the development of national nature conservation strategies. At the landscape scale, belts of high species richness correspond to steep environmental gradients and associated increases in local habitat diversity. In the mountains, the belts of increased species richness are at intermediate altitudes. These general belt-like patterns at mid-elevation are found in all model parameterizations. Other patterns, such as belts along rivers, are visible in specific parameterizations only. Thus we recommend using several sets of parameters in such modelling studies in order to capture the underlying spatial complexity of biodiversity.
References
- Antrop, M. (2004) Landscape change and the urbanization process in Europe. Landscape and Urban Planning, 67, 9–26.
- Araújo, M.B., Thuiller, W., Williams, P.H. & Reginster, I. (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography, 14, 17–30.
- BFS (19921997) Arealstatistik. Bundesamt für Statistik, Servicestelle GEOSTAT, Neuchâtel, Switzerland.
- Bhattarai, K.R., Vetaas, O.R. & Grytnes, J.A. (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography, 31, 389–400.
- Bonn, A. & Gaston, K.J. (2005) Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodiversity and Conservation, 14, 1083–1100.
- Brodtbeck, T., Zemp, M., Frei, M., Kienzle, U. & Knecht, D. (1998) Flora von Basel und Umgebung. Teil 1. Mitteilungen der Naturforschenden Gesellschaften beider Basel, 2, 1–543.
- Brown, J.H. (2001) Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography, 10, 101–109.
- Bruun, H.H., Moen, J. & Angerbjorn, A. (2003) Environmental correlates of meso-scale plant species richness in the province of Harjedalen, Sweden. Biodiversity and Conservation, 12, 2025–2041.
- Bundesamt für Statistik (2001) GEOSTAT Benutzerhandbuch. Bundesamt für Statistik, Neuchâtel.
- Colwell, R.K., Rahbek, C. & Gotelli, N.J. (2004) The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163, E1–E23.
-
Crawley, M.J. (1993) GLIM for ecologists. Blackwell Scientific, Oxford, UK.
10.1111/j.0030-1299.2005.13810.x Google Scholar
- Croxton, P.J., Carvell, C., Mountford, J.O. & Sparks, T.H. (2002) A comparison of green lanes and field margins as bumblebee habitat in an arable landscape. Biological Conservation, 107, 365–374.
- Croxton, P.J., Hann, J.P., Greatorex-Davies, J.N. & Sparks, T.H. (2005) Linear hotspots? The floral and butterfly diversity of green lanes. Biological Conservation, 121, 579–584.
- Cullen, L., Schmink, M., Padua, C.V. & Morato, M.I.R. (2001) Agroforestry benefit zones: a tool for the conservation and management of Atlantic forest fragments, São Paulo, Brazil. Natural Areas Journal, 21, 346–356.
- Currie, D.J. (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27–49.
- Currie, D.J. & Francis, A.P. (2004) Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? Reply. The American Naturalist, 163, 780–785.
- Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O’Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121–1134.
- De Quervain, F., Hofmänner, F., Jenny, V., Köppel, V. & Frey, D. (19631967) Geotechnische Karte der Schweiz, 1:200 000, 2. Aufl. Kümmerly & Frei, Bern.
- Deutschewitz, K., Lausch, A., Kühn, I. & Klotz, S. (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecology and Biogeography, 12, 299–311.
- Dullinger, S., Dirnbock, T. & Grabherr, G. (2003) Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arctic, Antarctic and Alpine Research, 35, 434–441.
- Engler, R., Guisan, A. & Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263–274.
- Ewald, J. (2003) The calcareous riddle: why are there so many calciphilous species in the central European flora? Folia Geobotanica, 38, 357–366.
- Ferrier, S. (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology, 51, 331–363.
- Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnutt, T.F., Cameron, S.E., Mantle, K., Burgess, N.D., Faith, D.P., Lamoreux, J.F., Kier, G., Hijmans, R.J., Funk, V.A., Cassis, G.A., Fisher, B.L., Flemons, P., Lees, D., Lovett, J.C. & Van Rompaey, R. (2004) Mapping more of terrestrial biodiversity for global conservation assessment. BioScience, 54, 1101–1109.
- Fleishman, E. & Mac Nally, R. (2002) Topographic determinants of faunal nestedness in Great Basin butterfly assemblages: applications to conservation planning. Conservation Biology, 16, 422–429.
- Forman, R.T.T. (1995) Some general principles of landscape and regional ecology. Landscape Ecology, 10, 133–142.
- Francis, A.P. & Currie, D.J. (2003) A globally consistent richness–climate relationship for angiosperms. The American Naturalist, 161, 523–536.
- Gottfried, M., Pauli, H. & Grabherr, G. (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arctic and Alpine Research, 30, 207–221.
- Gould, W. (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10, 1861–1870.
- Grabherr, G., Gottfried, M., Gruber, A. & Pauli, H. (1995) Patterns and current changes in alpine plant diversity. Arctic and alpine biodiversity (ed. by F.S. Chapin and C. Körner), pp. 167–181. Ecological Studies, Springer, Berlin.
- Grytnes, J.A., Birks, H.J.B. & Peglar, S.M. (1999) Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. Nordic Journal of Botany, 19, 489–503.
- Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.
- Guisan, A., Edwards, T.C. & Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89–100.
- Harner, R.F. & Harper, K.T. (1976) Role of area, heterogeneity, and favorability in plant species-diversity of pinyon-juniper ecosystems. Ecology, 57, 1254–1263.
-
Hawkins, B.A. &
Pausas, J.G. (2004) Does plant richness influence animal richness? The mammals of Catalonia (NE Spain).
Diversity and Distributions, 10, 247–252.
10.1111/j.1366-9516.2004.00085.x Google Scholar
- Heikkinen, R.K. (1996) Predicting patterns of vascular plant species richness with composite variables: a meso-scale study in Finnish Lapland. Vegetatio, 126, 151–165.
- Heikkinen, R.K. & Birks, H.J.B. (1996) Spatial and environmental components of variation in the distribution patterns of subarctic plant species at Kevo, N. Finland – a case study at the meso-scale level. Ecography, 19, 341–351.
- Heikkinen, R.K., Luoto, M., Virkkala, R. & Rainio, K. (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural–forest mosaic. Journal of Applied Ecology, 41, 824–835.
- Hintermann, U., Weber, D. & Zangger, A. (2000) Biodiversity monitoring in Switzerland. Schriftenreihe für Landschaftspflege und Naturschutz, 62, 47–58.
- Holm, S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.
- Kerr, J.T. & Cihlar, J. (2004) Patterns and causes of species endangerment in Canada. Ecological Applications, 14, 743–753.
- Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Kuper, W., Kreft, H. & Barthlott, W. (2005) Global patterns of plant diversity and floristic knowledge. Journal of Biogeography, 32, 1107–1116.
-
Körner, C. (1999) Alpine plant life. Springer, Berlin.
10.1007/978-3-642-98018-3 Google Scholar
- Kühn, I., Brandl, R. & Klotz, S. (2004) The flora of German cities is naturally species rich. Evolutionary Ecology Research, 6, 749–764.
- Landolt, E. (1983) Probleme der Höhenstufen in den Alpen. Botanica Helvetica, 93, 255–268.
- Landolt, E. (2001) Flora der Stadt Zürich (1984–1998). Birkhäuser, Biel-Benken.
- Lomolino, M.V. (2001) Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10, 3–13.
- Luoto, M., Toivonen, T. & Heikkinen, R.K. (2002) Prediction of total and rare plant species richness in agricultural landscapes from satellite images and topographic data. Landscape Ecology, 17, 195–217.
- Lütolf, M., Kienast, F. & Guisan, A. (2006) The ghost of past species presences: improving species distribution models for presence-only data. Journal of Applied Ecology, 43, 892–815.
- McCain, C.M. (2005) Elevational gradients in diversity of small mammals. Ecology, 86, 366–372.
- McCullagh, P. & Nelder, J.A. (1989) Generalized linear models, 2nd edn. Chapman & Hall, London.
- Meek, B., Loxton, D., Sparks, T., Pywell, R., Pickett, H. & Nowakowski, M. (2002) The effect of arable field margin composition on invertebrate biodiversity. Biological Conservation, 106, 259–271.
- Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig, M.R., Dodson, S.I. & Gough, L. (2001) What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.
- Moor, M. (1952) Die Fagion-Gesellschaften im Schweizer Jura. Beiträge zur geobotanischen Landesaufnahme der Schweiz, 31, 1–201.
- Moser, D., Dullinger, S., Englisch, T., Niklfeld, H., Plutzar, C., Sauberer, R., Zechmeister, H.G. & Grabherr, G. (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32, 1117–1127.
- Nagy, B. (1997) Orthoptera species and assemblages in the main habitat types of some urban areas in the Carpathian Basin. Biologia, 52, 233–240.
- Nicholls, R.J. (1989) How to make biological surveys go further with generalised linear models. Biological Conservation, 50, 51–75.
- Nichols, W.F., Killingbeck, K.T. & August, P.V. (1998) The influence of geomorphological heterogeneity on biodiversity. II. A landscape perspective. Conservation Biology, 12, 371–379.
- Noss, R.F. (2004) Conservation targets and information needs for regional conservation planning. Natural Areas Journal, 24, 223–231.
- Ortega, M., Elena-Rosello, R. & Del Barrio, J.M.G. (2004) Estimation of plant diversity at landscape level: a methodological approach applied to three Spanish rural areas. Environmental Monitoring and Assessment, 95, 97–116.
- Pärtel, M. (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology, 83, 2361–2366.
- Pimm, S.L. & Brown, J.H. (2004) Domains of diversity. Science, 304, 831–833.
-
Plattner, M.,
Birrer, S. &
Weber, D. (2004) Data quality in monitoring plant species richness in Switzerland.
Community Ecology, 5, 135–143.
10.1556/ComEc.5.2004.1.13 Google Scholar
- Poiani, K.A., Richter, B.D., Anderson, M.G. & Richter, H.E. (2000) Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. BioScience, 50, 133–146.
- Pyšek, P., Kucera, T. & Jarosik, V. (2002) Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscape. Global Ecology and Biogeography, 11, 279–289.
- R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org .
- Rahbek, C. (1995) The elevational gradient of species richness: a uniform pattern? Ecography, 18, 200–205.
- Rahbek, C. (1997) The relationship among area, elevation, and regional species richness in Neotropical birds. The American Naturalist, 149, 875–902.
- Rocchini, D., Andreini Butini, S. & Chiarucci, A. (2005) Maximizing plant species inventory efficiency by means of remotely sensed spectral distances. Global Ecology and Biogeography, 14, 431–437.
- Saarinen, K., Valtonen, A., Jantunen, J. & Saarnio, S. (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biological Conservation, 123, 403–412.
- Sarr, D.A., Hibbs, D.E. & Huston, M.A. (2005) A hierarchical perspective of plant diversity. Quarterly Review of Biology, 80, 187–212.
- Schmidtlein, S. & Ewald, J. (2003) Landscape patterns of indicator plants for soil acidity in the Bavarian Alps. Journal of Biogeography, 30, 1493–1503.
- Schwarz, M. & Zimmermann, N.E. (2005) A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sensing of Environment, 95, 428–443.
- Searcy, K.B., Wilson, B.F. & Fownes, J.H. (2003) Influence of bedrock and aspect on soils and plant distribution in the Holyoke Range, Massachusetts. Journal of the Torrey Botanical Society, 130, 158–169.
- Shmida, A. & Wilson, M.V. (1985) Biological determinants of species diversity. Journal of Biogeography, 12, 1–20.
- Stohlgren, T.J., Guenther, D.A., Evangelista, P.H. & Alley, N. (2005) Patterns of plant species richness, rarity, endemism, and uniqueness in an arid landscape. Ecological Applications, 15, 715–725.
- Tait, C.J., Daniels, C.B. & Hill, R.S. (2005) Changes in species assemblages within the Adelaide Metropolitan Area, Australia, 1836–2002. Ecological Applications, 15, 346–359.
- Turc, L. (1961) Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formule simplifié et mise à jour. Annales Agronomiques, 12, 13–49.
- Vázquez, L.B. & Gaston, K.J. (2004) Rarity, commonness, and patterns of species richness: the mammals of Mexico. Global Ecology and Biogeography, 13, 535–542.
-
Venables, W.N. &
Ripley, B.D. (1999) Modern applied statistics with S-PLUS, 3rd edn. Springer, New York.
10.1007/978-1-4757-3121-7 Google Scholar
- Vetaas, O.R. & Grytnes, J.A. (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291–301.
- Vormisto, J., Tuomisto, H. & Oksanen, J. (2004) Palm distribution patterns in Amazonian rainforests: what is the role of topographic variation? Journal of Vegetation Science, 15, 485–494.
- Waldhardt, R., Simmering, D. & Otte, A. (2004) Estimation and prediction of plant species richness in a mosaic landscape. Landscape Ecology, 19, 211–226.
- Wania, A., Kuhn, I. & Klotz, S. (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany – spatial gradients of species richness. Landscape and Urban Planning, 75, 97–110.
- Ward, J.V. (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83, 269–278.
- Weber, D., Hintermann, U. & Zangger, A. (2004) Scale and trends in species richness: considerations for monitoring biological diversity for political purposes. Global Ecology and Biogeography, 13, 97–104.
- Wohlgemuth, T. (1993) The distribution atlas of pteridophytes and phanerograms of Switzerland (Welten and Sutter 1982) in a relational database – species number per mapping unit and its dependence on various factors. Botanica Helvetica, 103, 55–71.
- Wohlgemuth, T. (1998) Modelling floristic species richness on a regional scale: a case study in Switzerland. Biodiversity and Conservation, 7, 159–177.
- Wohlgemuth, T. (2002a) Alpine plant species richness in the Swiss Alps: diversity hot spots reconsidered. Mémoires de la Societé botanique de Genève, 3, 63–74.
- Wohlgemuth, T. (2002b) Environmental determinants of vascular plant species richness in the Swiss Alpine zone. Mountain biodiversity: a global assessment (ed. by C. Körner and E.M. Spehn), pp. 103–116. Parthenon Publishing Group, Boca Raton.
- Wohlgemuth, T. & Gigon, A. (2003) Calcicole plant diversity in Switzerland may reflect a variety of habitat templets. Folia Geobotanica, 38, 443–452.
- Wyler, N. (2004) Analyse du paysage et richesse spécifique: Le cas de la flore du canton de Genève (Suisse). Thèse No. 3493, Université de Genève, Genève.
- Zapata, F.A., Gaston, K.J. & Chown, S.L. (2003) Mid-domain models of species richness gradients: assumptions, methods and evidence. Journal of Animal Ecology, 72, 677–690.
- Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10, 469–482.