Prostate cancer and inflammation: the evidence
Angelo M De Marzo
Departments of Pathology
Oncology, The Sidney Kimmel Comprehensive Cancer Center
Department of Urology, The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorAngelo M De Marzo
Departments of Pathology
Oncology, The Sidney Kimmel Comprehensive Cancer Center
Department of Urology, The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorAbstract
Sfanos K S & De Marzo A M (2012) Histopathology 60, 199–215 Prostate cancer and inflammation: the evidence
Chronic inflammation is now known to contribute to several forms of human cancer, with an estimated 20% of adult cancers attributable to chronic inflammatory conditions caused by infectious agents, chronic non-infectious inflammatory diseases and/or other environmental factors. Indeed, chronic inflammation is now regarded as an ‘enabling characteristic’ of human cancer. The aim of this review is to summarize the current literature on the evidence for a role for chronic inflammation in prostate cancer aetiology, with a specific focus on recent advances regarding the following: (i) potential stimuli for prostatic inflammation; (ii) prostate cancer immunobiology; (iii) inflammatory pathways and cytokines in prostate cancer risk and development; (iv) proliferative inflammatory atrophy (PIA) as a risk factor lesion to prostate cancer development; and (v) the role of nutritional or other anti-inflammatory compounds in reducing prostate cancer risk.
References
- 1 Siegel R , Ward E , Brawley O , Jemal A . Cancer statistics, 2011 . CA Cancer J. Clin. 2011 ; 61 ; 212 – 236 .
- 2 De Marzo AM , Platz EA , Sutcliffe S et al. Inflammation in prostate carcinogenesis . Nat. Rev. Cancer 2007 ; 7 ; 256 – 269 .
- 3 Krieger JN , Nyberg L , Nickel JC . NIH consensus definition and classification of prostatitis . JAMA 1999 ; 282 ; 236 – 237 .
- 4 Brede CM , Shoskes DA . The etiology and management of acute prostatitis . Nat. Rev. Urol. 2011 ; 8 ; 207 – 212 .
- 5 Cai T , Mazzoli S , Meacci F et al. Epidemiological features and resistance pattern in uropathogens isolated from chronic bacterial prostatitis . J. Microbiol. 2011 ; 49 ; 448 – 454 .
- 6 Collins MM , Meigs JB , Barry MJ , Corkery EW , Giovannucci E , Kawachi I . Prevalence and correlates of prostatitis in the health professionals follow-up study cohort . J. Urol. 2002 ; 167 ; 1363 – 1366 .
- 7 Stimac G , Reljic A , Spajic B et al. Aggressiveness of inflammation in histological prostatitis – correlation with total and free prostate specific antigen levels in men with biochemical criteria for prostate biopsy . Scott. Med. J. 2009 ; 54 ; 8 – 12 .
- 8 Gui-zhong LI , Libo M , Guanglin H , Jianwei W . The correlation of extent and grade of inflammation with serum PSA levels in patients with IV prostatitis . Int. Urol. Nephrol. 2011 ; 43 ; 295 – 301 .
- 9 Ugurlu O , Yaris M , Oztekin CV , Kosan TM , Adsan O , Cetinkaya M . Impacts of antibiotic and anti-inflammatory therapies on serum prostate-specific antigen levels in the presence of prostatic inflammation: a prospective randomized controlled trial . Urol. Int. 2010 ; 84 ; 185 – 190 .
- 10 Fujita K , Hosomi M , Tanigawa G , Okumi M , Fushimi H , Yamaguchi S . Prostatic inflammation detected in initial biopsy specimens and urinary pyuria are predictors of negative repeat prostate biopsy . J. Urol. 2011 ; 185 ; 1722 – 1727 .
- 11 Delongchamps NB , de la Roza G , Chandan V et al. Evaluation of prostatitis in autopsied prostates – is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J. Urol. 2008 ; 179 ; 1736 – 1740 .
- 12 Nickel JC , Downey J , Young I , Boag S . Asymptomatic inflammation and/or infection in benign prostatic hyperplasia . BJU Int. 1999 ; 84 ; 976 – 981 .
- 13 Nickel JC , Roehrborn CG , O’Leary MP , Bostwick DG , Somerville MC , Rittmaster RS . The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial . Eur. Urol. 2008 ; 54 ; 1379 – 1384 .
- 14 Eastham JA , May RA , Whatley T , Crow A , Venable DD , Sartor O . Clinical characteristics and biopsy specimen features in African-American and white men without prostate cancer . J. Natl Cancer Inst. 1998 ; 90 ; 756 – 760 .
- 15 Wallace TA , Prueitt RL , Yi M et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men . Cancer Res. 2008 ; 68 ; 927 – 936 .
- 16 Sutcliffe S . Sexually transmitted infections and risk of prostate cancer: review of historical and emerging hypotheses . Future Oncol. 2010 ; 6 ; 1289 – 1311 .
- 17 Weidner W , Schiefer HG , Krauss H . Role of Chlamydia trachomatis and mycoplasmas in chronic prostatitis. A review . Urol. Int. 1988 ; 43 ; 167 – 173 .
- 18 Mandar R , Raukas E , Turk S , Korrovits P , Punab M . Mycoplasmas in semen of chronic prostatitis patients . Scand. J. Urol. Nephrol. 2005 ; 39 ; 479 – 482 .
- 19 Dennis LK , Lynch CF , Torner JC . Epidemiologic association between prostatitis and prostate cancer . Urology 2002 ; 60 ; 78 – 83 .
- 20 Sarma AV , McLaughlin JC , Wallner LP et al. Sexual behavior, sexually transmitted diseases and prostatitis: the risk of prostate cancer in black men . J. Urol. 2006 ; 176 ; 1108 – 1113 .
- 21 Sutcliffe S , Giovannucci E , De Marzo AM , Leitzmann MF , Willett WC , Platz EA . Gonorrhea, syphilis, clinical prostatitis, and the risk of prostate cancer . Cancer Epidemiol. Biomarkers Prev. 2006 ; 15 ; 2160 – 2166 .
- 22 Palapattu GS , Sutcliffe S , Bastian PJ et al. Prostate carcinogenesis and inflammation: emerging insights . Carcinogenesis 2005 ; 26 ; 1170 – 1181 .
- 23 Cheng I , Witte JS , Jacobsen SJ et al. Prostatitis, sexually transmitted diseases, and prostate cancer: the California Men’s Health Study . PLoS ONE 2010 ; 5 ; e8736 .
- 24 Sfanos KS , Sauvageot J , Fedor HL , Dick JD , De Marzo AM , Isaacs WB . A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms . Prostate 2008 ; 68 ; 306 – 320 .
- 25 Bergh J , Marklund I , Thellenberg-Karls C , Gronberg H , Elgh F , Alexeyev OA . Detection of Escherichia coli 16S RNA and cytotoxic necrotizing factor 1 gene in benign prostate hyperplasia . Eur. Urol. 2007 ; 51 ; 457 – 462 ; discussion 462–453 .
- 26 Boehm BJ , Colopy SA , Jerde TJ , Loftus CJ , Bushman W . Acute bacterial inflammation of the mouse prostate . Prostate 2011 ; [Epub ahead of print] DOI: 10.1002/pros.21433 .
- 27 Elkahwaji JE , Hauke RJ , Brawner CM . Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate . Br. J. Cancer 2009 ; 101 ; 1740 – 1748 .
- 28 Khalili M , Mutton LN , Gurel B , Hicks JL , De Marzo AM , Bieberich CJ . Loss of Nkx3.1 expression in bacterial prostatitis: a potential link between inflammation and neoplasia . Am. J. Pathol. 2010 ; 176 ; 2259 – 2268 .
- 29 Quintar AA , Doll A , Leimgruber C et al. Acute inflammation promotes early cellular stimulation of the epithelial and stromal compartments of the rat prostate . Prostate 2010 ; 70 ; 1153 – 1165 .
- 30 Rippere-Lampe KE , Lang M , Ceri H , Olson M , Lockman HA , O’Brien AD . Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model . Infect. Immun. 2001 ; 69 ; 6515 – 6519 .
- 31 Nougayrede J-P , Homburg S , Taieb F et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells . Science 2006 ; 313 ; 848 – 851 .
- 32 Dubois D , Delmas J , Cady A et al. Cyclomodulins in urosepsis strains of Escherichia coli . J. Clin. Microbiol. 2010 ; 48 ; 2122 – 2129 .
- 33 Krieger JN , Dobrindt U , Riley DE , Oswald E . Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes . Urology 2011 ; 77 ; 1420 – 1425 .
- 34 Ostaszewska I , Zdrodowska-Stefanow B , Badyda J , Pucilo K , Trybula J , Bulhak V . Chlamydia trachomatis: probable cause of prostatitis . Int. J. STD AIDS 1998 ; 9 ; 350 – 353 .
- 35 Corradi G , Bucsek M , Panovics J et al. Detection of Chlamydia trachomatis in the prostate by in-situ hybridization and by transmission electron microscopy . Int. J. Androl. 1996 ; 19 ; 109 – 112 .
- 36 Bielecki R , Zdrodowska-Stefan B , Ostaszewska-Pucha I , Baltaziak M , Kozlowski R . Subclinical prostatic inflammation attributable to Chlamydia trachomatis in a patient with prostate cancer . Med. Wieku Rozwoj. 2005 ; 9 ; 87 – 91 .
- 37 Sutcliffe S , Giovannucci E , Gaydos CA et al. Plasma antibodies against Chlamydia trachomatis, human papillomavirus, and human herpesvirus type 8 in relation to prostate cancer: a prospective study . Cancer Epidemiol. Biomarkers Prev. 2007 ; 16 ; 1573 – 1580 .
- 38 Huang W-Y , Hayes R , Pfeiffer R et al. Sexually transmissible infections and prostate cancer risk . Cancer Epidemiol. Biomarkers Prev. 2008 ; 17 ; 2374 – 2381 .
- 39 Anttila T , Tenkanen L , Lumme S et al. Chlamydial antibodies and risk of prostate cancer . Cancer Epidemiol. Biomarkers Prev. 2005 ; 14 ; 385 – 389 .
- 40 Mackern-Oberti JP , Maccioni M , Breser ML , Eley A , Miethke T , Rivero VE . Innate immunity in the male genital tract: Chlamydia trachomatis induces keratinocyte-derived chemokine production in prostate, seminal vesicle and epididymis/vas deferens primary cultures . J. Med. Microbiol. 2011 ; 60 ; 307 – 316 .
- 41 Mackern-Oberti JP , Maccioni M , Cuffini C , Gatti G , Rivero VE . Susceptibility of prostate epithelial cells to Chlamydia muridarum infection and their role in innate immunity by recruitment of intracellular Toll-like receptors 4 and 2 and MyD88 to the inclusion . Infect. Immun. 2006 ; 74 ; 6973 – 6981 .
- 42 Jakab E , Zbinden R , Gubler J , Ruef C , von Graevenitz A , Krause M . Severe infections caused by Propionibacterium acnes: an underestimated pathogen in late postoperative infections . Yale J. Biol. Med. 1996 ; 69 ; 477 – 482 .
- 43 Cohen RJ , Shannon BA , McNeal JE , Shannon TOM , Garrett KL . Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J. Urol. 2005 ; 173 ; 1969 – 1974 .
- 44 Fassi Fehri L , Mak TN , Laube B et al. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells . Int. J. Med. Microbiol. 2011 ; 301 ; 69 – 78 .
- 45 Alexeyev O , Bergh J , Marklund I et al. Association between the presence of bacterial 16S RNA in prostate specimens taken during transurethral resection of prostate and subsequent risk of prostate cancer (Sweden) . Cancer Causes Control 2006 ; 17 ; 1127 – 1133 .
- 46 Alexeyev OA , Marklund I , Shannon B et al. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay . J. Clin. Microbiol. 2007 ; 45 ; 3721 – 3728 .
- 47 Galobardes B , Smith GD , Jeffreys M , Kinra S , McCarron P . Acne in adolescence and cause-specific mortality: lower coronary heart disease but higher prostate cancer mortality . Am. J. Epidemiol. 2005 ; 161 ; 1094 – 1101 .
- 48 Sutcliffe S , Giovannucci E , Isaacs WB , Willett WC , Platz EA . Acne and risk of prostate cancer . Int. J. Cancer 2007 ; 121 ; 2688 – 2692 .
- 49 Severi G , Shannon BA , Hoang HN et al. Plasma concentration of Propionibacterium acnes antibodies and prostate cancer risk: results from an Australian population-based case–control study . Br. J. Cancer 2010 ; 103 ; 411 – 415 .
- 50 Sutcliffe S , Giovannucci E , Alderete JF et al. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer . Cancer Epidemiology Biomarkers & Prevention 2006 ; 15 ; 939 – 945 .
- 51 Sutcliffe S , Alderete JF , Till C et al. Trichomonosis and subsequent risk of prostate cancer in the Prostate Cancer Prevention Trial . Int. J. Cancer 2009 ; 124 ; 2082 – 2087 .
- 52 Stark JR , Judson G , Alderete JF et al. Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians’ Health Study . J. Natl Cancer Inst. 2009 ; 101 ; 1406 – 1411 .
- 53 Sutcliffe S , Zenilman JM , Ghanem KG et al. Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration . J. Urol. 2006 ; 175 ; 1937 – 1942 .
- 54 Sutcliffe S , Nevin RL , Pakpahan R et al. Prostate involvement during sexually transmitted infections as measured by prostate-specific antigen concentration . Br. J. Cancer 2011 ; 105 ; 602 – 605 .
- 55 Klein EA , Silverman R . Inflammation, infection, and prostate cancer . Curr. Opin. Urol. 2008 ; 18 ; 315 – 319 .
- 56 Urisman A , Molinaro RJ , Fischer N et al. Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant . PLoS Pathog. 2006 ; 2 ; e25 .
- 57 Aloia AL , Sfanos KS , Isaacs WB et al. XMRV: a new virus in prostate cancer? Cancer Res. 2010 ; 70 ; 10028 – 10033 .
- 58 Farley SJ . Prostate cancer: XMRV-contaminant, not cause? Nat. Rev. Urol. 2011 ; 8 ; 409 .
- 59 Paprotka T , Delviks-Frankenberry KA , Cingoz O et al. Recombinant origin of the retrovirus XMRV . Science 2011 ; 333 ; 97 – 101 .
- 60 Yang J , Battacharya P , Singhal R , Kandel ES . Xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer cells likely represents a laboratory artifact . Oncotarget 2011 ; 2 ; 358 – 362 .
- 61 Oakes B , Tai AK , Cingoz O et al. Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences . Retrovirology 2010 ; 7 ; 109 .
- 62 Sato E , Furuta RA , Miyazawa T . An endogenous murine leukemia viral genome contaminant in a commercial RT–PCR kit is amplified using standard primers for XMRV . Retrovirology 2010 ; 7 ; 110 .
- 63 Robinson MJ , Erlwein OW , Kaye S et al. Mouse DNA contamination in human tissue tested for XMRV . Retrovirology 2010 ; 7 ; 108 .
- 64 Erlwein O , Robinson MJ , Dustan S , Weber J , Kaye S , McClure MO . DNA extraction columns contaminated with murine sequences . PLoS ONE 2011 ; 6 ; e23484 .
- 65 Nelson WG , DeWeese TL , DeMarzo AM . The diet, prostate inflammation, and the development of prostate cancer . Cancer Metastasis Rev. 2002 ; 21 ; 3 – 16 .
- 66 Schut HAJ , Snyderwine EG . DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis . Carcinogenesis 1999 ; 20 ; 353 – 368 .
- 67 Sander A , Linseisen J , Rohrmann S . Intake of heterocyclic aromatic amines and the risk of prostate cancer in the EPIC-Heidelberg cohort . Cancer Causes Control 2011 ; 22 ; 109 – 114 .
- 68 Rodriguez C , McCullough ML , Mondul AM et al. Meat consumption among black and white men and risk of prostate cancer in the cancer prevention study II nutrition cohort . Cancer Epidemiol. Biomarkers Prev. 2006 ; 15 ; 211 – 216 .
- 69 Sinha R , Park Y , Graubard BI et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States . Am. J. Epidemiol. 2009 ; 170 ; 1165 – 1177 .
- 70 Koutros S , Cross AJ , Sandler DP et al. Meat and meat mutagens and risk of prostate cancer in the agricultural health study . Cancer Epidemiol. Biomarkers Prev. 2008 ; 17 ; 80 – 87 .
- 71 John EM , Stern MC , Sinha R , Koo J . Meat consumption, cooking practices, meat mutagens, and risk of prostate cancer . Nutr. Cancer 2011 ; 63 ; 525 – 537 .
- 72 Shirai T , Sano M , Tamano S et al. The prostate: a target for carcinogenicity of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods . Cancer Res. 1997 ; 57 ; 195 – 198 .
- 73 Nakai Y , Nelson WG , De Marzo AM . The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate . Cancer Res. 2007 ; 67 ; 1378 – 1384 .
- 74 Borowsky AD , Dingley KH , Ubick E , Turteltaub KW , Cardiff RD , Devere-White R . Inflammation and atrophy precede prostatic neoplasia in a PhIP-induced rat model . Neoplasia 2006 ; 8 ; 708 – 715 .
- 75 Kristal AR , Arnold KB , Neuhouser ML et al. Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial . Am. J. Epidemiol. 2010 ; 172 ; 566 – 577 .
- 76 Park S-Y , Murphy SP , Wilkens LR , Henderson BE , Kolonel LN . Fat and meat intake and prostate cancer risk: the multiethnic cohort study . Int. J. Cancer 2007 ; 121 ; 1339 – 1345 .
- 77 Wallström P , Bjartell A , Gullberg B , Olsson H , Wirfält E . A prospective study on dietary fat and incidence of prostate cancer (Malmö, Sweden) . Cancer Causes Control 2007 ; 18 ; 1107 – 1121 .
- 78 Crowe FL , Key TJ , Appleby PN et al. Dietary fat intake and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition . Am. J. Clin. Nutr. 2008 ; 87 ; 1405 – 1413 .
- 79 Neuhouser ML , Barnett MJ , Kristal AR et al. (n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers . J. Nutr. 2007 ; 137 ; 1821 – 1827 .
- 80 James MJ , Gibson RA , Cleland LG . Dietary polyunsaturated fatty acids and inflammatory mediator production . Am. J. Clin. Nutr. 2000 ; 71 ; 343S – 348S .
- 81 Klimas R , Bennett B , Gardner WA . Prostatic calculi: a review . Prostate 1985 ; 7 ; 91 – 96 .
- 82 Sfanos KS , Wilson BA , De Marzo AM , Isaacs WB . Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer . Proc. Natl. Acad. Sci. USA 2009 ; 106 ; 3443 – 3448 .
- 83 Yanamandra K , Alexeyev O , Zamotin V et al. Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate . PLoS ONE 2009 ; 4 ; e5562 .
- 84 Beyer M , Schultze JL . Regulatory T cells in cancer . Blood 2006 ; 108 ; 804 – 811 .
- 85 Dranoff G . The therapeutic implications of intratumoral regulatory T cells . Clin. Cancer Res. 2005 ; 11 ; 8226 – 8229 .
- 86 Miller AM , Lundberg K , Ozenci V et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients . J. Immunol. 2006 ; 177 ; 7398 – 7405 .
- 87 Sfanos KS , Bruno TC , Maris CH et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing . Clin. Cancer Res. 2008 ; 14 ; 3254 – 3261 .
- 88 Ebelt K , Babaryka G , Frankenberger B et al. Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters . Eur. J. Cancer 2009 ; 45 ; 1664 – 1672 .
- 89 Yokokawa J , Cereda V , Remondo C et al. Enhanced functionality of CD4+CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer . Clin. Cancer Res. 2008 ; 14 ; 1032 – 1040 .
- 90 Ebert LM , Tan BS , Browning J et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells . Cancer Res. 2008 ; 68 ; 3001 – 3009 .
- 91 Kiniwa Y , Miyahara Y , Wang HY et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer . Clin. Cancer Res. 2007 ; 13 ; 6947 – 6958 .
- 92 Dong H , Strome SE , Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion . Nat. Med. 2002 ; 8 ; 793 – 800 .
- 93 Hirano F , Kaneko K , Tamura H et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity . Cancer Res. 2005 ; 65 ; 1089 – 1096 .
- 94 Berger R , Rotem-Yehudar R , Slama G et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies . Clin. Cancer Res. 2008 ; 14 ; 3044 – 3051 .
- 95 Brahmer JR , Drake CG , Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates . J. Clin. Oncol. 2010 ; 28 ; 3167 – 3175 .
- 96 Sfanos KS , Bruno TC , Meeker AK , De Marzo AM , Isaacs WB , Drake CG . Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+ . Prostate 2009 ; 69 ; 1694 – 1703 .
- 97 May KF , Gulley JL , Drake CG , Dranoff G , Kantoff PW . Prostate cancer immunotherapy . Clin. Cancer Res. 2011 ; 17 ; 5233 – 5238 .
- 98 Weaver CT , Harrington LE , Mangan PR , Gavrieli M , Murphy KM . Th17: an effector CD4 T cell lineage with regulatory T cell ties . Immunity 2006 ; 24 ; 677 – 688 .
- 99 Bettelli E , Oukka M , Kuchroo VK . TH-17 cells in the circle of immunity and autoimmunity . Nat. Immunol. 2007 ; 8 ; 345 – 350 .
- 100 Wilke CM , Kryczek I , Wei S et al. Th17 cells in cancer: help or hindrance? Carcinogenesis 2011 ; 32 ; 643 – 649 .
- 101 Steiner GE , Newman ME , Paikl D et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate . Prostate 2003 ; 56 ; 171 – 182 .
- 102 Kottke T , Sanchez-Perez L , Diaz RM et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer . Cancer Res. 2007 ; 67 ; 11970 – 11979 .
- 103 Derhovanessian E , Adams V , Hähnel K et al. Pretreatment frequency of circulating IL-17+CD4+ T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients . Int. J. Cancer 2009 ; 125 ; 1372 – 1379 .
- 104 Karja V , Aaltomaa S , Lipponen P , Isotalo T , Talja M , Mokka R . Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy . Anticancer Res. 2005 ; 25 ; 4435 – 4438 .
- 105 Nonomura N , Takayama H , Nakayama M et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer . BJU Int. 2011 ; 107 ; 1918 – 1922 .
- 106 Vindrieux D , Escobar P , Lazennec G . Emerging roles of chemokines in prostate cancer . Endocr. Relat. Cancer 2009 ; 16 ; 663 – 673 .
- 107 Hughes C , Murphy A , Martin C , Sheils O , O’Leary J . Molecular pathology of prostate cancer . J. Clin. Pathol. 2005 ; 58 ; 673 – 684 .
- 108 Licastro F , Bertaccini A , Porcellini E et al. Alpha 1 antichymotrypsin genotype is associated with increased risk of prostate carcinoma and PSA levels . Anticancer Res. 2008 ; 28 ; 395 – 399 .
- 109 Tindall EA , Severi G , Hoang HN et al. Comprehensive analysis of the cytokine-rich chromosome 5q31.1 region suggests a role for IL-4 gene variants in prostate cancer risk . Carcinogenesis 2010 ; 31 ; 1748 – 1754 .
- 110 Zabaleta J , Lin H-Y , Sierra RA et al. Interactions of cytokine gene polymorphisms in prostate cancer risk . Carcinogenesis 2008 ; 29 ; 573 – 578 .
- 111 Zabaleta J , Su LJ , Lin H-Y et al. Cytokine genetic polymorphisms and prostate cancer aggressiveness . Carcinogenesis 2009 ; 30 ; 1358 – 1362 .
- 112 Kwon EM , Salinas CA , Kolb S et al. Genetic polymorphisms in inflammation pathway genes and prostate cancer risk . Cancer Epidemiol. Biomarkers Prev. 2011 ; 20 ; 923 – 933 .
- 113
Gupta S
,
Srivastava M
,
Ahmad N
,
Bostwick DG
,
Mukhtar H
.
Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma
.
Prostate
2000
;
42
;
73
–
78
.
10.1002/(SICI)1097-0045(20000101)42:1<73::AID-PROS9>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 114 Kirschenbaum A , Klausner AP , Lee R et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate . Urology 2000 ; 56 ; 671 – 676 .
- 115 Zha S , Gage WR , Sauvageot J et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma . Cancer Res. 2001 ; 61 ; 8617 – 8623 .
- 116 Fernandez P , de Beer PM , van der Merwe L , Heyns CF . COX-2 promoter polymorphisms and the association with prostate cancer risk in South African men . Carcinogenesis 2008 ; 29 ; 2347 – 2350 .
- 117 Danforth KN , Hayes RB , Rodriguez C et al. Polymorphic variants in PTGS2 and prostate cancer risk: results from two large nested case–control studies . Carcinogenesis 2008 ; 29 ; 568 – 572 .
- 118 Dossus L , Kaaks R , Canzian F et al. PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3) . Carcinogenesis 2010 ; 31 ; 455 – 461 .
- 119 Murad A , Lewis SJ , Smith GD et al. PTGS2-899G>C and prostate cancer risk: a population-based nested case–control study (ProtecT) and a systematic review with meta-analysis . Prostate Cancer Prostatic Dis. 2009 ; 12 ; 296 – 300 .
- 120 Amirian ES , Ittmann MM , Scheurer ME . Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk . Prostate 2011 ; [Epub ahead of print] DOI: 10.1002/pros.21354 .
- 121 Balistreri CR , Caruso C , Carruba G et al. A pilot study on prostate cancer risk and pro-inflammatory genotypes: pathophysiology and therapeutic implications . Curr. Pharm. Des. 2010 ; 16 ; 718 – 724 .
- 122 Wu H-C , Chang C-H , Ke H-L et al. Association of cyclooxygenase 2 polymorphic genotypes with prostate cancer in Taiwan . Anticancer Res. 2011 ; 31 ; 221 – 225 .
- 123 Cheng I , Liu X , Plummer SJ , Krumroy LM , Casey G , Witte JS . COX2 genetic variation, NSAIDs, and advanced prostate cancer risk . Br. J. Cancer 2007 ; 97 ; 557 – 561 .
- 124 Panguluri RCK , Long LO , Chen W et al. COX-2 gene promoter haplotypes and prostate cancer risk . Carcinogenesis 2004 ; 25 ; 961 – 966 .
- 125 Yegnasubramanian S , Kowalski J , Gonzalgo ML et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer . Cancer Res. 2004 ; 64 ; 1975 – 1986 .
- 126 Woodson K , O’Reilly KJ , Ward DE et al. CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease . Epigenetics 2006 ; 1 ; 183 – 186 .
- 127 Bastian PJ , Ellinger J , Heukamp LC , Kahl P , Muller SC , von Rucker A . Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy . Eur. Urol. 2007 ; 51 ; 665 – 674 ; discussion 674 .
- 128 Ellinger J , Bastian PJ , Jurgan T et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer . Urology 2008 ; 71 ; 161 – 167 .
- 129 Bastian PJ , Palapattu GS , Yegnasubramanian S et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer . J. Urol. 2008 ; 179 ; 529 – 534 ; discussion 534–525 .
- 130 Bootcov MR , Bauskin AR , Valenzuela SM et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily . Proc. Natl Acad. Sci. USA 1997 ; 94 ; 11514 – 11519 .
- 131 Nakamura T , Scorilas A , Stephan C et al. Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues . Br. J. Cancer 2003 ; 88 ; 1101 – 1104 .
- 132 Cheung PK , Woolcock B , Adomat H et al. Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis . Cancer Res. 2004 ; 64 ; 5929 – 5933 .
- 133 Brown DA , Lindmark F , Stattin P et al. Macrophage inhibitory cytokine 1: a new prognostic marker in prostate cancer . Clin. Cancer Res. 2009 ; 15 ; 6658 – 6664 .
- 134 Karan D , Holzbeierlein J , Thrasher JB . Macrophage inhibitory cytokine-1: possible bridge molecule of inflammation and prostate cancer . Cancer Res. 2009 ; 69 ; 2 – 5 .
- 135 Hirano T . The biology of interleukin-6 . Chem. Immunol. 1992 ; 51 ; 153 – 180 .
- 136 Ishihara K , Hirano T . IL-6 in autoimmune disease and chronic inflammatory proliferative disease . Cytokine Growth Factor Rev. 2002 ; 13 ; 357 – 368 .
- 137 Kishimoto T . Interleukin-6: from basic science to medicine-40 years in immunology . Ann. Rev. Immunol. 2005 ; 23 ; 1 – 21 .
- 138 Hobisch A , Rogatsch H , Hittmair A et al. Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue . J. Pathol. 2000 ; 191 ; 239 – 244 .
- 139 Smith PC , Hobisch A , Lin D-L , Culig Z , Keller ET . Interleukin-6 and prostate cancer progression . Cytokine Growth Factor Rev. 2001 ; 12 ; 33 – 40 .
- 140 Twillie DA , Eisenberger MA , Carducci MA , Hseih W-S , Kim WY , Simons JW . Interleukin-6: a candidate mediator of human prostate cancer morbidity . Urology 1995 ; 45 ; 542 – 549 .
- 141 Culig Z , Puhr M . Interleukin-6: a multifunctional targetable cytokine in human prostate cancer . Mol. Cell. Endocrinol. 2011 ; [Epub ahead of print] DOI: org/10.1016/j.mce.2011.05.033 .
- 142 Iliopoulos D , Hirsch HA , Struhl K . An epigenetic switch involving NF-[kappa]B, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation . Cell 2009 ; 139 ; 693 – 706 .
- 143 Ammirante M , Luo J-L , Grivennikov S , Nedospasov S , Karin M . B-cell-derived lymphotoxin promotes castration-resistant prostate cancer . Nature 2010 ; 464 ; 302 – 305 .
- 144 Mercader M , Bodner BK , Moser MT et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer . Proc. Natl Acad. Sci. USA 2001 ; 98 ; 14565 – 14570 .
- 145 Zhou P , Fang X , McNally BA et al. Targeting lymphotoxin-mediated negative selection to prevent prostate cancer in mice with genetic predisposition . Proc. Natl Acad. Sci. USA 2009 ; 106 ; 17134 – 17139 .
- 146 Liu X , Plummer SJ , Nock NL , Casey G , Witte JS . Nonsteroidal Antiinflammatory Drugs and Decreased Risk of Advanced Prostate Cancer: Modification by Lymphotoxin Alpha . American Journal of Epidemiology 2006 ; 164 ; 984 – 989 .
- 147 De Marzo AM , Marchi VL , Epstein JI , Nelson WG . Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis . Am. J. Pathol. 1999 ; 155 ; 1985 – 1992 .
- 148 Nelson WG , De Marzo AM , Isaacs WB . Prostate cancer . N. Engl. J. Med. 2003 ; 349 ; 366 – 381 .
- 149 Putzi MJ , De Marzo AM . Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia . Urology 2000 ; 56 ; 828 – 832 .
- 150 Wang W , Bergh A , Damber J-E . Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate . Prostate 2009 ; 69 ; 1378 – 1386 .
- 151 Bethel CR , Faith D , Li X et al. Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with Gleason score and chromosome 8p deletion . Cancer Res. 2006 ; 66 ; 10683 – 10690 .
- 152 Wang W , Bergh A , Damber J-E . Increased p53 immunoreactivity in proliferative inflammatory atrophy of prostate is related to focal acute inflammation . APMIS 2009 ; 117 ; 185 – 195 .
- 153 Nakayama M , Bennett CJ , Hicks JL et al. Hypermethylation of the human glutathione S-transferase-[pi] gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection . Am. J. Pathol. 2003 ; 163 ; 923 – 933 .
- 154 Hsu A , Bray TM , Ho E . Anti-inflammatory activity of soy and tea in prostate cancer prevention . Exp. Biol. Med. 2010 ; 235 ; 659 – 667 .
- 155 Vardi A , Bosviel R , Rabiau N et al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells . In Vivo 2010 ; 24 ; 393 – 400 .
- 156 Hadley CW , Miller EC , Schwartz SJ , Clinton SK . Tomatoes, lycopene, and prostate cancer: progress and promise . Exp. Biol. Med. 2002 ; 227 ; 869 – 880 .
- 157 Pannellini T , Iezzi M , Liberatore M et al. A dietary tomato supplement prevents prostate cancer in TRAMP mice . Cancer Prev. Res. 2010 ; 3 ; 1284 – 1291 .
- 158 Fradet V , Cheng I , Casey G , Witte JS . Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk . Clin. Cancer Res. 2009 ; 15 ; 2559 – 2566 .
- 159 Vissapragada S , Ghosh A , Ringer L et al. Dietary n-3 polyunsaturated fatty acids fail to reduce prostate tumorigenesis in the PB-ErbB-2 × Pten preclinical mouse model . Cell Cycle 2010 ; 9 ; 1824 – 1829 .
- 160 Jafari S , Etminan M , Afshar K . Nonsteroidal anti-inflammatory drugs and prostate cancer: a systematic review of the literature and meta-analysis . Can. Urol. Assoc. J. 2009 ; 3 ; 323 – 330 .
- 161 Salinas CA , Kwon EM , FitzGerald LM et al. Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk . Am. J. Epidemiol. 2010 ; 172 ; 578 – 590 .