Split-step complex Padé-Fourier depth migration
SUMMARY
We present a split-step complex Padé-Fourier migration method based on the one-way wave equation. The downward-continuation operator is split into two downward-continuation operators: one operator is a phase-shift operator and the other operator is a finite-difference operator. A complex treatment of the propagation operator is applied to mitigate inaccuracies and instabilities due to evanescent waves. It produces high-quality images of complex structures with fewer numerical artefacts than those obtained using a real approximation of a square-root operator in the one-way wave equation. Tests on zero-offset data from the SEG/EAGE salt data show that the method improves the image quality at the cost of an additional 10 per cent computational time compared to the conventional Fourier finite-difference method.