IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion
Donatella Aldinucci
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Search for more papers by this authorMarta Celegato
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Search for more papers by this authorCinzia Borghese
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Search for more papers by this authorAlfonso Colombatti
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Department of Biomedical Science and Technology, University of Udine
dMATI (Microgravity Ageing Training Immobility) Excellence Center, University of Udine, Udine
Search for more papers by this authorAntonino Carbone
Division of Pathology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN), Italy
Search for more papers by this authorDonatella Aldinucci
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Search for more papers by this authorMarta Celegato
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Search for more papers by this authorCinzia Borghese
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Search for more papers by this authorAlfonso Colombatti
Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN)
Department of Biomedical Science and Technology, University of Udine
dMATI (Microgravity Ageing Training Immobility) Excellence Center, University of Udine, Udine
Search for more papers by this authorAntonino Carbone
Division of Pathology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN), Italy
Search for more papers by this authorSummary
Interferon regulatory factor 4 (IRF4) expression is detected in many lymphoid and myeloid malignancies, and may be a promising therapeutic target. IRF4 is strongly expressed in classical Hodgkin lymphoma (cHL) and its expression is up-regulated by CD40L and down-regulated by both anti-proliferative and pro-apoptotic stimuli. This study analysed the effects of IRF4 silencing in a panel of HL-derived cell lines. We demonstrated that IRF4 down-modulation determined a remarkable decrease of both cell number and clonogenic growth in L-1236, L-428, KM-H2 and HDLM-2 cells, but not in IRF4-negative L-540 cells. IRF4 silencing induced apoptosis, as evaluated by caspase-3 activation and Annexin-V staining and up-regulation of the pro-apoptotic molecule Bax. CD40 engagement by both soluble and membrane bound-CD40L almost totally reduced IRF4 down-modulation and growth inhibition by IRF4 silencing in both L-1236 and L-428 cells. Finally, IRF4 silencing decreased CCL5 secretion in all HL cell lines tested and CCL17 in KM-H2 cells. Taken together, our results demonstrated that IRF4 down-modulation by IRF4 silencing was reversed by CD40 engagement, inhibited HL cells proliferation, induced apoptosis and decreased CCL5 secretion, thus suggesting that IRF4 may be involved in HL pathobiology.
References
- Aldinucci, D., Lorenzon, D., Cattaruzza, L., Pinto, A., Gloghini, A., Carbone, A. & Colombatti, A. (2008) Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. International Journal of Cancer, 122, 769–776.
- Aldinucci, D., Rapana’, B., Olivo, K., Lorenzon, D., Gloghini, A., Colombatti, A. & Carbone, A. (2010a) IRF4 is modulated by CD40L and by apoptotic and anti-proliferative signals in Hodgkin lymphoma. British Journal of Haematology, 148, 115–118.
- Aldinucci, D., Gloghini, A., Pinto, A., De, F.R. & Carbone, A. (2010b) The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. Journal of Pathology, 221, 248–263.
- van den Berg, A., Visser, L. & Poppema, S. (1999) High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin’s lymphoma. The American Journal of Pathology, 154, 1685–1691.
- Biggar, R.J., Johansen, J.S., Smedby, K.E., Rostgaard, K., Chang, E.T., Adami, H.O., Glimelius, B., Molin, D., Hamilton-Dutoit, S., Melbye, M. & Hjalgrim, H. (2008) Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clinical Cancer Research, 14, 6974–6978.
- Carbone, A., Gloghini, A., Gattei, V., Aldinucci, D., Degan, M., De, P.P., Zagonel, V. & Pinto, A. (1995) Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood, 85, 780–789.
- Carbone, A., Gloghini, A., Aldinucci, D., Gattei, V., Dalla-Favera, R. & Gaidano, G. (2002) Expression pattern of MUM1/IRF4 in the spectrum of pathology of Hodgkin’s disease. British Journal of Haematology, 117, 366–372.
- Cattaruzza, L., Gloghini, A., Olivo, K., Di, F.R., Lorenzon, D., De, F.R., Carbone, A., Colombatti, A., Pinto, A. & Aldinucci, D. (2009) Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. International Journal of Cancer, 125, 1092–1101.
- Cattaruzza, L., Fregona, D., Mongiat, M., Ronconi, L., Fassina, A., Colombatti, A. & Aldinucci, D. (2011) Antitumor activity of gold(III)-dithiocarbamato derivatives on prostate cancer cells and xenografts. International Journal of Cancer, 128, 206–215.
- Drexler, H.G. (1993) Recent results on the biology of Hodgkin and Reed-Sternberg cells. II. Continuous cell lines. Leukemia and Lymphoma, 9, 1–25.
- Falini, B., Fizzotti, M., Pucciarini, A., Bigerna, B., Marafioti, T., Gambacorta, M., Pacini, R., Alunni, C., Natali-Tanci, L., Ugolini, B., Sebastiani, C., Cattoretti, G., Pileri, S., Dalla-Favera, R. & Stein, H. (2000) A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood, 95, 2084–2092.
- Fischer, M., Juremalm, M., Olsson, N., Backlin, C., Sundstrom, C., Nilsson, K., Enblad, G. & Nilsson, G. (2003) Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. International Journal of Cancer, 107, 197–201.
- Gualco, G., Weiss, L.M. & Bacchi, C.E. (2010) MUM1/IRF4: a review. Applied Immunohistochemistry and Molecular Morphology, 18, 301–310.
- Herbst, H., Foss, H.D., Samol, J., Araujo, I., Klotzbach, H., Krause, H., Agathanggelou, A., Niedobitek, G. & Stein, H. (1996) Frequent expression of interleukin-10 by Epstein–Barr virus-harboring tumor cells of Hodgkin’s disease. Blood, 87, 2918–2929.
- Klein, U., Casola, S., Cattoretti, G., Shen, Q., Lia, M., Mo, T., Ludwig, T., Rajewsky, K. & Dalla-Favera, R. (2006) Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunology, 7, 773–782.
- Kuppers, R. (2009) The biology of Hodgkin’s lymphoma. Nature Reviews. Cancer, 9, 15–27.
-
Lampariello, F. (2000) On the use of the Kolmogorov–Smirnov statistical test for immunofluorescence histogram comparison.
Cytometry, 39, 179–188.
10.1002/(SICI)1097-0320(20000301)39:3<179::AID-CYTO2>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- Lamprecht, B., Kreher, S., Anagnostopoulos, I., Johrens, K., Monteleone, G., Jundt, F., Stein, H., Janz, M., Dorken, B. & Mathas, S. (2008) Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3alpha. Blood, 112, 3339–3347.
- Lin, L., Nonoyama, S., Oshiba, A., Kabasawa, Y. & Mizutani, S. (2003) TARC and MDC are produced by CD40 activated human B cells and are elevated in the sera of infantile atopic dermatitis patients. Journal of Medical and Dental Sciences, 50, 27–33.
- Pinto, A., Aldinucci, D., Gattei, V., Zagonel, V., Tortora, G., Budillon, A. & Cho-Chung, Y.S. (1992) Inhibition of the self-renewal capacity of blast progenitors from acute myeloblastic leukemia patients by site-selective 8-chloroadenosine 3’,5’-cyclic monophosphate. Proceedings of the National Academy of Sciences of the United States of America, 89, 8884–8888.
- Re, D., Hofmann, A., Wolf, J., Diehl, V. & Staratschek-Jox, A. (2000) Cultivated H-RS cells are resistant to CD95L-mediated apoptosis despite expression of wild-type CD95. Experimental Hematology, 28, 31–35.
- Saito, M., Gao, J., Basso, K., Kitagawa, Y., Smith, P.M., Bhagat, G., Pernis, A., Pasqualucci, L. & Dalla-Favera, R. (2007) A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell, 12, 280–292.
- Shaffer, A.L., Emre, N.C., Lamy, L., Ngo, V.N., Wright, G., Xiao, W., Powell, J., Dave, S., Yu, X., Zhao, H., Zeng, Y., Chen, B., Epstein, J. & Staudt, L.M. (2008) IRF4 addiction in multiple myeloma. Nature, 454, 226–231.
- Shaffer, A.L., Emre, N.C., Romesser, P.B. & Staudt, L.M. (2009) IRF4: immunity. Malignancy! Therapy? Clinical Cancer Research, 15, 2954–2961.
- Skinnider, B.F. & Mak, T.W. (2002) The role of cytokines in classical Hodgkin lymphoma. Blood, 99, 4283–4297.
- Skinnider, B.F., Kapp, U. & Mak, T.W. (2002) The role of interleukin 13 in classical Hodgkin lymphoma. Leukemia and Lymphoma, 43, 1203–1210.
- Steidl, C., Lee, T., Shah, S.P., Farinha, P., Han, G., Nayar, T., Delaney, A., Jones, S.J., Iqbal, J., Weisenburger, D.D., Bast, M.A., Rosenwald, A., Muller-Hermelink, H.K., Rimsza, L.M., Campo, E., Delabie, J., Braziel, R.M., Cook, J.R., Tubbs, R.R., Jaffe, E.S., Lenz, G., Connors, J.M., Staudt, L.M., Chan, W.C. & Gascoyne, R.D. (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. The New England Journal of Medicine, 362, 875–885.
- Tamura, T., Tailor, P., Yamaoka, K., Kong, H.J., Tsujimura, H., O’Shea, J.J., Singh, H. & Ozato, K. (2005) IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. Journal of Immunology, 174, 2573–2581.
- Wolf, J., Kapp, U., Bohlen, H., Kornacker, M., Schoch, C., Stahl, B., Mucke, S., von, K.C., Fonatsch, C., Schaefer, H.E., Hansmann, M.L. & Diehl, V. (1996) Peripheral blood mononuclear cells of a patient with advanced Hodgkin’s lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood, 87, 3418–3428.
- Xu, D., Zhao, L., Del, V.L., Miklossy, J. & Zhang, L. (2008) Interferon regulatory factor 4 is involved in Epstein–Barr virus-mediated transformation of human B lymphocytes. Journal of Virology, 82, 6251–6258.