Successful correction of murine sickle cell disease with reduced stem cell requirements reinforced by fractionated marrow infusions
Hady Felfly
Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculte de Medecine de L’Universite de Montreal, Montreal, QC, Canada
Search for more papers by this authorMarie Trudel
Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculte de Medecine de L’Universite de Montreal, Montreal, QC, Canada
Search for more papers by this authorHady Felfly
Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculte de Medecine de L’Universite de Montreal, Montreal, QC, Canada
Search for more papers by this authorMarie Trudel
Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculte de Medecine de L’Universite de Montreal, Montreal, QC, Canada
Search for more papers by this authorSummary
Minimal criteria requirements of stem cell replacement, conditioning regimen and modalities of infusion essential for cure of sickle cell disease (SCD) by bone marrow(BM)/stem cell transplantation or gene therapy must be established prior to clinical trials. The threshold of normal BM/stem cells for therapeutic correction of this red blood cell disorder was evaluated in the SAD murine SCD model from peripheral donor white blood cells. From 11 groups of stable chimeric SAD mice (5–92%) analyzed over ∼2 years, mice with ∼16% normal donor stem cells showed improvement of haematological and erythroid responses. Mice in the 26% chimeric group and above demonstrated substantial amelioration of organ pathologies with generalized decreased iron deposits, fibrosis and reached normal lifespan. Subsequently, the minimal myelosuppression concurrently with number and timing of infusions and number of BM cells was determined to reach therapeutic threshold in SAD mice. Higher myelosuppression (2 Gy vs. 1 Gy) and cell number in single infusion led to increased chimerism. Importantly, administration of three-equivalent cell subdoses within 28 h of mild myelosuppression resulted in 100% recipient engraftment at therapeutic levels. These studies established the long-term therapeutic chimeric threshold of normal white blood cells at ∼26% and determined the minimal fractionated BM/stem cell doses concomitant with mild myelosuppression for significant correction of SCD in SAD mice.
Supporting Information
Table SI. Quantification of erythroid precursors in SAD chimeric mice.
Table SII. Haematological parameters of myelosuppressed SAD chimeric mice.
Table SIII. Analysis of haematopoiesis/erythropoiesis in myelosuppressed SAD chimeric mice.
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Filename | Description |
---|---|
BJH_7985_sm_tS1.doc52.5 KB | Supporting info item |
BJH_7985_sm_tS2.doc35.5 KB | Supporting info item |
BJH_7985_sm_tS3.doc49 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Andreani, M., Nesci, S., Lucarelli, G., Tonucci, P., Rapa, S., Angelucci, E., Persini, B., Agostinelli, F., Donati, M. & Manna, M. (2000) Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplantation, 25, 401–404.
- Beauchemin, H., Blouin, M.J. & Trudel, M. (2004) Differential regulatory and compensatory responses in hematopoiesis/erythropoiesis in α- and β-globin hemizygous mice. Journal of Biological Chemistry, 279, 19471–19480.
- Bhathena, D.B. & Sondheimer, J.H. (1991) The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. Journal of the American Society of Nephrology, 1, 1241–1252.
- Blouin, M.J. & Trudel, M. (1997) Characterization of the hematopoietic precursors in sickle cell disease of SAD transgenic mouse model. Blood, 90, 22–23.
- Blouin, M.-J., De Paepe, M. & Trudel, M. (1999) Altered hematopoiesis in murine sickle cell disease. Blood, 94, 1451–1459.
- Blouin, M.-J., Beauchemin, H., Wright, A., DePaepe, M., Sorette, M., Bleau, A.-M., Nakamoto, B., Ou, C.-N., Stamatoyannopoulos, G. & Trudel, M. (2000) Genetic correction of sickle cell disease: insights using transgenic mouse models. Nature Medicine, 6, 177–182.
- Cerny, J., Dooner, M., McAuliffe, C., Habibian, H., Stencil, K., Berrios, V., Reilly, J., Carlson, J., Cerny, A.M., D’Hondt, L., Benoit, B., Lambert, J.F., Colvin, G., Nilsson, S., Becker, P. & Quesenberry, P. (2002) Homing of purified murine lymphohematopoietic stem cells: a cytokine-induced defect. Journal of Hematotherapy and Stem Cell Research, 11, 913–922.
- Chang, J.C., Lu, R., Lin, C., Xu, S.M., Kan, Y.W., Porcu, S., Carlson, E., Kitamura, M., Yang, S., Flebbe-Rehwaldt, L. & Gaensler, K.M. (1998) Transgenic knockout mice exclusively expressing human hemoglobin S after transfer of a 240-kb bs-globin yeast artificial chromosome: a mouse model of sickle cell anemia. Proceedings of the National Academy of Sciences of the United States of America, 95, 14886–14890.
- Colvin, G.A., Lambert, J.-F., Dooner, M.S., Cerny, J. & Quesenberry, P.J. (2007) Murine allogeneic in vivo stem cell homing. Journal of Cell Physiology, 211, 386–391.
- De Paepe, M.E. & Trudel, M. (1994) The transgenic SAD mouse: a model of human sickle cell glomerulopathy. Kidney International, 46, 1337–1345.
- Fabry, M.E. (1993) Transgenic animal models of sickle cell disease. Experientia, 49, 28–36.
- Fabry, M.E., Costantini, F., Pachnis, A., Suzuka, S.M., Bank, N., Aynedjian, H.S., Factor, S.M. & Nagel, R.L. (1992a) High expression of human βS- and α-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 89, 12155–12159.
- Fabry, M.E., Nagel, R.L., Pachnis, A., Suzuka, S.M. & Costantini, F. (1992b) High expression of human βS- and α-globins in transgenic mice: hemoglobin composition and hematological consequences. Proceedings of the National Academy of Sciences of the United States of America, 89, 12150–12154.
- Fabry, M.E., Suzuka, S.M., Weinberg, R.S., Lawrence, C., Factor, S.M., Gilman, J.G., Costantini, F. & Nagel, R.L. (2001) Second generation knockout sickle mice: the effect of HbF. Blood, 97, 410–418.
- Felfly, H. & Trudel, M. (2007) Long-term correction of β-thalassemia with minimal cellular requirement and transplantation modalities. Molecular Therapy, 15, 1701–1709.
- Frenette, P.S. & Atweh, G.F. (2007) Sickle cell disease: old discoveries, new concepts, and future promise. Journal of Clinical Investigation, 117, 850–858.
- Hanawa, H., Hargrove, P.W., Kepes, S., Srivastava, D.K., Nienhaus, A.W. & Persons, D.A. (2004) Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood, 104, 2281–2290.
- Hanna, J., Wernig, M., Markoulaki, S., Sun, C.-W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.-C., Townes, T.W. & Jaenisch, R. (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923.
- Harrison, D.E., Jordan, C.T., Zhong, R.K. & Astle, C.M. (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Experimental Hematology, 21, 206–219.
- Haspel, R.L. & Ballen, K.K. (2006) Double cord blood transplants: filling a niche? Stem Cell Reviews and Reports, 2, 81–86.
- Horan, J.T., Liesveld, J.L., Fenton, P., Blumberg, N. & Walters, M.C. (2005) Hematopoietic stem cell transplantation for multiply transfused patients with sickle cell disease and thalassemia after low-dose total body irradiation, fludarabine, and rabbit anti-thymocyte globulin. Bone Marrow Transplantation, 35, 171–177.
- Iannone, R., Luznik, L., Engstrom, L.W., Tennessee, S.L., Askin, F.B., Casella, J.F., Kickler, T.S., Goodman, S.N., Hawkins, A.L., Griffin, C.A., Noffsinger, L. & Fuchs, E.J. (2001) Effects of mixed hematopoietic chimerism in a mouse model of bone marrow transplantation for sickle cell anemia. Blood, 97, 3960–3965.
- Iannone, R., Casella, J.F., Fuchs, E.J., Chen, A.R., Jones, R.F., Woolfrey, A., Amylon, M., Sullivan, K.M., Storb, R.F. & Walters, M.C. (2003) Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and β-thalassemia. Biology of Blood and Marrow Transplantation, 9, 519–528.
- Iwamoto, K.S. & McBride, W.H. (1994) Production of 13-hydroxyoctadecadienoic acid and tumor necrosis factor-alpha by murine peritoneal macrophages in response to irradiation. Radiation Research, 139, 103–108.
- Johnson, F.L., Look, A.T., Gockerman, J., Ruggiero, M., Dalla-Poza, L. & Billings, F.T., 3rd (1984) Bone-marrow transplantation in a patient with sickle-cell anemia. New England Journal of Medicine, 311, 780–783.
- Kapelushnik, J., Or, R., Filon, D., Nagler, A., Cividalli, G., Aker, M., Naparstek, E., Slavin, S. & Oppenheim, A. (1995) Analysis of beta-globin mutations shows stable mixed chimerism in patients with thalassemia after bone marrow transplantation. Blood, 86, 3241–3246.
- Kean, L.S., Durham, M.M., Adams, A.B., Hsu, L.L., Perry, J.R., Dillehay, D., Pearson, T.C., Waller, E.K., Larsen, C.P. & Archer, D.R. (2002) A cure for murine sickle cell disease through stable mixed chimerism and tolerance induction after nonmyeloablative conditioning and major histocompatibility complex-mismatched bone marrow transplantation. Blood, 99, 1840–1849.
- Kean, L.S., Manci, E.A., Perry, J., Balkan, C., Coley, S., Holtzclaw, D., Adams, A.B., Larsen, C.P., Hsu, L.L. & Archer, D.R. (2003) Chimersism and cure: hematologic and pathologic correction of murine sickle celle disease. Blood, 102, 4582–4593.
- Kojima, S. (2006) Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with x-rays. The Pharmaceutical Society of Japan, 126, 849–857.
- Kollet, O., Dar, A. & Lapidot, T. (2007) The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annual Review of Immunology, 25, 51–69.
- Lande, I.M., Glazer, G.M., Sarnaik, S., Aisen, A., Rucknagel, D.L. & Martel, W. (1986) Sickle-cell nephrology: MR imaging. Radiology, 158, 379–383.
- Linard, C., Marquette, C., Mathieu, J., Pennequin, A., Clarencon, D. & Mathe, D. (2004) Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappaB inhibitor. International Journal of Radiation Oncology, Biology, Physics, 58, 427–434.
- Locatelli, F., Rocha, V., Reed, W., Bernaudin, F., Ertem, M., Grafakos, S., Brichard, B., Li, X., Nagler, A., Giorgiani, G., Haut, P.R., Brochstein, J.A., Nugent, D.J., Blatt, J., Woodard, P., Kurtzberg, J., Rubin, C.M., Miniero, R., Lutz, P., Raja, T., Roberts, I., Will, A.M., Yaniv, I., Vermylen, C., Tannoia, N., Garnier, F., Ionescu, I., Walters, M.C., Lubin, B.H., Gluckman, E. & Eurocord Transplant Group (2003) Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood, 101, 2137–2143.
- Lonergan, G.J., Cline, D.B. & Abbondanzo, S.L. (2001) Sickle cell anemia. Radiographics, 21, 971–994.
- Majhail, N.S., Brunstein, C.G. & Wagner, J.E. (2006) Double umbilical cord blood transplantation. Current Opinion in Immunology, 18, 571–575.
- Nagel, R.L. (1998) A knockout of a transgenic mouse - animal models of sickle cell anemia. New England Journal of Medicine, 339, 194–195.
- Oh, I.H., Fabry, M.E., Humphries, R.K., Pawliuk, R., Leboulch, P., Hoffman, R., Nagel, R.L. & Eaves, C. (2004) Expression of an anti-sickling beta-globin in human erythoblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Experimental Hematology, 32, 461–469.
- Paszty, C., Brion, C.M., Manci, E., Witkowska, H.E., Stevens, M.E., Mohandas, N. & Rubin, E.M. (1997) Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science, 278, 876–878.
- Pawliuk, R., Westerman, K.A., Fabry, M.E., Payen, E., Tighe, R., Bouhassira, E.E., Acharya, S.A., Ellis, J., London, I.M., Eaves, C.J., Humphries, R.K., Beuzard, Y., Nagel, R.L. & Leboulch, P. (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 294, 2368–2371.
- Pinto, F.O. & Roberts, I. (2008) Cord blood stem cell transplantation for haemoglobinopathies. British Journal of Haematology, 141, 309–324.
- Ryan, T.M., Ciavatta, D.J. & Townes, T.M. (1997) Knockout-transgenic mouse model of sickle cell disease. Science, 278, 873–876.
- Safwat, A. (2000) The immunobiology of low-dose total body irradiation: more questions than answers. Radiation Research, 153, 599–604.
- Samakoglu, S., Lisowski, L., Budak-Alpdogan, T., Usachenko, Y., Acuto, S., Di Marzo, R., Maggio, A., Zhu, P., Tisdale, J.F., Riviere, I. & Sadelain, M. (2006) A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nature Biotechnology, 24, 89–94.
- Tartakovsky, B., Goldstein, O., Krautghamer, H. & Harran-Ghera, N. (1993) Low doses of radiation induce systemic production of cytokines: possible contribution to leukemogenesis. International Journal of Cancer, 55, 269–274.
- Tejani, A., Phadke, K., Adamson, O., Nicastri, A., Chen, C.K. & Sen, D. (1985) Renal lesions in sickle cell nephropathy in children. Nephron, 39, 352–355.
- Trudel, M., Saadane, N., Garel, M.-C., Bardakdjian-Michau, J., Blouquit, Y., Guerquin-Kern, J.-L., Rouyer-Fessard, P., Vidaud, D., Pachnis, A., Romeo, P.-H., Beuzard, Y. & Costantini, F. (1991) Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. The EMBO Journal, 10, 3157–3165.
- Trudel, M., De Paepe, M.E., Chretien, N., Saadane, N., Jacmain, J., Sorette, M., Hoang, T. & Beuzard, Y. (1994) Sickle cell disease of transgenic SAD mice. Blood, 84, 3189–3197.
- Walters, M.C., Patience, M., Leisenring, W., Eckman, J.R., Scott, J.P., Mentzer, W.C., Davies, S.C., Ohene-Frempong, K., Bernaudin, F., Matthews, D.C., Storb, R. & Sullivan, K.M. (1996) Bone marrow transplantation for sickle cell disease. New England Journal of Medicine, 335, 369–376.
- Walters, M.C., Storb, R., Patience, M., Leisenring, W., Taylor, T., Sanders, J.E., Buchanan, G.E., Rogers, Z.R., Dinndorf, P., Davies, S.C., Roberts, I.A., Dickerhoff, R., Yeager, A.M., Hsu, L., Kurtzberg, J., Ohene-Frempong, K., Bunin, N., Bernaudin, F., Wong, W.Y., Scott, J.P., Margolis, D., Vichinsky, E., Wall, D.A., Wayne, A.S., Pegelow, C., Redding-Lallinger, R., Wiley, J., Klemperer, M., Mentzer, W.C., Smith, F.O. & Sullivan, K.M. (2000) Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Blood, 95, 1918–1924.
- Wu, C.J., Lakshamanan, K., Kutok, J.L., Biernacki, M., Rogers, S., Zhang, W., Antin, J.H. & Ritz, J. (2005) Evidence of ineffective erythropoiesis in severe sickle cell disease. Blood, 106, 3639–3645.