Generation and characterisation of Rhd and Rhag null mice
Dominique Goossens
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorMarie-Marcelle Trinh-Trang-Tan
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorMartine Debbia
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Search for more papers by this authorPierre Ripoche
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorCamilo Vilela-Lamego
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Search for more papers by this authorFawzia Louache
Inserm U790 – Institut Gustave Roussy-Université, Paris XI-39, rue Camille Desmoulins, Villejuif, France
Search for more papers by this authorWilliam Vainchenker
Inserm U790 – Institut Gustave Roussy-Université, Paris XI-39, rue Camille Desmoulins, Villejuif, France
Search for more papers by this authorYves Colin
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorJean-Pierre Cartron
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Search for more papers by this authorDominique Goossens
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorMarie-Marcelle Trinh-Trang-Tan
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorMartine Debbia
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Search for more papers by this authorPierre Ripoche
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorCamilo Vilela-Lamego
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Search for more papers by this authorFawzia Louache
Inserm U790 – Institut Gustave Roussy-Université, Paris XI-39, rue Camille Desmoulins, Villejuif, France
Search for more papers by this authorWilliam Vainchenker
Inserm U790 – Institut Gustave Roussy-Université, Paris XI-39, rue Camille Desmoulins, Villejuif, France
Search for more papers by this authorYves Colin
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Inserm UMR_S 665/Université Paris Diderot/6, rue Alexandre Cabanel, Paris
Search for more papers by this authorJean-Pierre Cartron
Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris
Search for more papers by this authorRha and Rhag are MGI nomenclature.
Summary
Mouse Rhd* and Rhag* genes were targeted using insertional vectors; the resulting knockout mice, and double-knockout descendants, were analysed. Rhag glycoprotein deficiency entailed defective assembly of the erythroid Rh complex with complete loss of Rh and intercellular adhesion molecule 4 (ICAM-4), but not CD47, expression. Absence of the Rh protein induced a loss of ICAM-4, and only a moderate reduction of Rhag expression. Double knockout phenotype was similar to that of Rhag targeted mice. Rhd and Rhag deficient mice exhibited neither the equivalent of human Rhnull haemolytic anaemia nor any clinical or cellular abnormalities. Rhd−/− and Rhag−/− erythrocytes showed decreased basal adhesion to an endothelial cell line resulting from defective ICAM-4 membrane expression. There was no difference in recovery from phenylhydrazine-induced haematopoietic stress for double knockout mice as compared to controls, suggesting that ICAM-4 might be dispensable during stress erythropoiesis. Ammonia and methylammonia transport in erythrocytes was severely impaired in Rhag−/− but only slightly in Rhd−/− animals that significantly expressed Rhag, supporting the view that RhAG and Rhag, but not Rh, may act as ammonium transporters in human and mouse erythrocytes. These knockout mice should prove useful for further dissecting the physiological roles of Rh and Rhag proteins in the red cell membrane.
Supporting Information
Fig S1. Adhesion molecules of RBCs from Rh−/− and Rhag−/− mice.
Fig S2. Osmotic fragility of RBCs from Rh and Rhag targeted mice.
Tables SI-AB. -A bilirubin and -B ferritin, iron and transferrin values in KO Rh, Rhag and double KO and controls.
Table SII. KO Rh, Rhag and double KO mice show no major alterations in erythrocyte parameters.
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Filename | Description |
---|---|
BJH_7928_sm_fig S1.tif12.9 MB | Supporting info item |
BJH_7928_sm_fig S2.tif13.7 MB | Supporting info item |
BJH_7928_sm_Tables SIA, SIB.doc55.5 KB | Supporting info item |
BJH_7928_sm_Table SII.doc63.5 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Agre, P. & Cartron, J.P. (1991) Molecular biology of the Rh antigens. Blood, 78, 551–563.
- Avent, N.D. & Reid, M.E. (2000) The Rh blood group system: a review. Blood, 95, 375–387.
- Avent, N.D., Madgett, T.E., Lee, Z.E., Head, D.J., Maddocks, D.G. & Skinner, L.H. (2006) Molecular biology of Rh proteins and relevance to molecular medicine. Expert Reviews in Molecular Medicine, 8, 1–20.
- Bailly, P., Hermand, P., Callebaut, I., Sonneborn, H.H., Khamlichi, S., Mornon, J.P. & Cartron, J.P. (1994) The LW blood group glycoprotein is homologous to intercellular adhesion molecules. Proceedings of the National Academy of Sciences of the United States of America, 91, 5306–5310.
- Bailly, P., Tontti, E., Hermand, P., Cartron, J.P. & Gahmberg, C.G. (1995) The red cell LW blood group protein is an intercellular adhesion molecule which binds to CD11/CD18 leukocyte integrins. European Journal of Immunology, 25, 3316–3320.
- Bakouh, N., Benjelloun, F., Hulin, P., Brouillard, F., Edelman, A., Cherif-Zahar, B. & Planelles, G. (2004) NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein. Journal of Biological Chemistry, 279, 15975–15983.
- Ballas, S.K., Clark, M.R., Mohandas, N., Colfer, H.F., Caswell, M.S., Bergren, M.O., Perkins, H.A. & Shohet, S.B. (1984) Red cell membrane and cation deficiency in Rh null syndrome. Blood, 63, 1046–1055.
- Brown, E.J. & Frazier, W.A. (2001) Integrin-associated protein (CD47) and its ligands. Trends in Cell Biology, 11, 130–135.
- Bruce, L.J. (2008) Red cell membrane transport abnormalities. Current Opinion in Hematology, 15, 184–190.
- Bruce, L.J., Beckmann, R., Ribeiro, M.L., Peters, L.L., Chasis, J.A., Delaunay, J., Mohandas, N., Anstee, D.J. & Tanner, M.J. (2003) A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood, 101, 4180–4188.
- Bruce, L.J., Guizouarn, H., Burton, N.M., Gabillat, N., Poole, J., Flatt, J.F., Brady, R.L., Borgese, F., Delaunay, J. & Stewart, G.W. (2009) The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood, 113, 1350–1357.
- Burton, N.M. & Anstee, D.J. (2008) Structure, function and significance of Rh proteins in red cells. Current Opinion in Hematology, 15, 625–630.
- Callebaut, I., Dulin, F., Bertrand, O., Ripoche, P., Mouro, I., Colin, Y., Mornon, J.P. & Cartron, J.P. (2006) Hydrophobic cluster analysis and modeling of the human Rh protein three-dimensional structures. Transfusion Clinique et Biologique, 13, 70–84.
- Cartron, J.P. (1999) RH blood group system and molecular basis of Rh-deficiency. Bailliere’s Best Practice & Research. Clinical Haematology, 12, 655–689.
- Cartron, J.P. (2008) Blood group antigens structure and function: recent advances. Hematology Education: Education Programme for the Annual Congress of the European Hematology Association, 2008, 158–174.
- Cartron, J.P. & Elion, J. (2008) Erythroid adhesion molecules in sickle cell disease: effect of hydroxyurea. Transfusion Clinique et Biologique, 15, 39–50.
- Conroy, M.J., Bullough, P.A., Merrick, M. & Avent, N.D. (2005) Modelling the human rhesus proteins: implications for structure and function. British Journal of Haematology, 131, 543–551.
- Cooke, B.M., Usami, S., Perry, I. & Nash, G.B. (1993) A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvascular Research, 45, 33–45.
- Endeward, V., Musa-Aziz, R., Cooper, G.J., Chen, L.M., Pelletier, M.F., Virkki, L.V., Supuran, C.T., King, L.S., Boron, W.F. & Gros, G. (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB Journal, 20, 1974–1981.
- Endeward, V., Cartron, J.P., Ripoche, P. & Gros, G. (2008) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB Journal, 22, 64–73.
- Foudi, A., Jarrier, P., Zhang, Y., Wittner, M., Geay, J.F., Lecluse, Y., Nagasawa, T., Vainchenker, W. & Louache, F. (2006) Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood, 107, 2243–2251.
- Frenette, P.S. (2004) Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion. Microcirculation, 11, 167–177.
- Gane, P., Le Van Kim, C., Bony, V., El Nemer, W., Mouro, I., Nicolas, V., Colin, Y. & Cartron, J.P. (2001) Flow cytometric analysis of the association between blood group-related proteins and the detergent-insoluble material of K562 cells and erythroid precursors. British Journal of Haematology, 113, 680–688.
- Gilligan, D.M., Lozovatsky, L., Gwynn, B., Brugnara, C., Mohandas, N. & Peters, L.L. (1999) Targeted disruption of the beta adducin gene (Add2) causes red blood cell spherocytosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 10717–10722.
- Godal, H.C., Nyvold, N. & Rustad, A. (1979) The osmotic fragility of red blood cells: a re-evaluation of technical conditions. Scandinavian Journal of Haematology, 23, 55–58.
- Goossens, D., Bony, V., Gane, P., Colin, Y. & Cartron, J.P. (2006) Generation of mice with inactivated Rh or Rhag genes. Transfusion Clinique et Biologique, 13, 164–166.
- Gwynn, B., Korsgren, C., Cohen, C.M., Ciciotte, S.L. & Peters, L.L. (1997) The gene encoding protein 4.2 is distinct from the mouse platelet storage pool deficiency mutation pallid. Genomics, 42, 532–535.
- Hebbel, R.P., Osarogiagbon, R. & Kaul, D. (2004) The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation, 11, 129–151.
- Hermand, P., Mouro, I., Huet, M., Bloy, C., Suyama, K., Goldstein, J., Cartron, J.P. & Bailly, P. (1993) Immunochemical characterization of rhesus proteins with antibodies raised against synthetic peptides. Blood, 82, 669–676.
- Hermand, P., Huet, M., Callebaut, I., Gane, P., Ihanus, E., Gahmberg, C.G., Cartron, J.P. & Bailly, P. (2000) Binding sites of leukocyte beta 2 integrins (LFA-1, Mac-1) on the human ICAM-4/LW blood group protein. Journal of Biological Chemistry, 275, 26002–26010.
- Hermand, P., Gane, P., Callebaut, I., Kieffer, N., Cartron, J.P. & Bailly, P. (2004) Integrin receptor specificity for human red cell ICAM-4 ligand. Critical residues for alphaIIbeta3 binding. European Journal of Biochemistry, 271, 3729–3740.
- Huang, C.H. & Liu, P.Z. (2001) New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells, Molecules, and Diseases, 27, 90–101.
- Huang, C.H. & Peng, J. (2005) Evolutionary conservation and diversification of Rh family genes and proteins. Proceedings of the National Academy of Sciences of the United States of America, 102, 15512–15517.
- Huang, C.H., Liu, P.Z. & Cheng, J.G. (2000) Molecular biology and genetics of the Rh blood group system. Seminars in Hematology, 37, 150–165.
- Ihanus, E., Uotila, L.M., Toivanen, A., Varis, M. & Gahmberg, C.G. (2007) Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4. Blood, 109, 802–810.
- Kaul, D.K., Liu, X.D., Zhang, X., Mankelow, T., Parsons, S., Spring, F., An, X., Mohandas, N., Anstee, D. & Chasis, J.A. (2006) Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation. American Journal of Physiology. Cell Physiology, 291, C922–C930.
- Kustu, S. & Inwood, W. (2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfusion Clinique et Biologique, 13, 103–110.
- Lauf, P.K. & Joiner, C.H. (1976) Increased potassium transport and ouabain binding in human Rhnull red blood cells. Blood, 48, 457–468.
- Lauf, P.K., Adragna, N.C., Goossens, D. & Cartron, J.P. (2009) Role of Rh (rhesus) complex in K-Cl cotransport (KCC) regulation in red blood cells (RBCs) of Rh and Rh-associated glycoprotein (RhAg) knockout (KO) mice. Faseb Journal, 23, (abstract) 797.795.
- Le Van Kim, C., Colin, Y. & Cartron, J.P. (2006) Rh proteins: key structural and functional components of the red cell membrane. Blood Reviews, 20, 93–110.
- Lee, G., Lo, A., Short, S.A., Mankelow, T.J., Spring, F., Parsons, S.F., Yazdanbakhsh, K., Mohandas, N., Anstee, D.J. & Chasis, J.A. (2006) Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood, 108, 2064–2071.
- Liu, Z. & Huang, C.H. (1999) The mouse Rhl1 and Rhag genes: sequence, organization, expression, and chromosomal mapping. Biochemical Genetics, 37, 119–138.
- Ludewig, U. (2006) Ion transport versus gas conduction: function of AMT/Rh-type proteins. Transfusion Clinique et Biologique, 13, 111–116.
- Mankelow, T.J., Spring, F.A., Parsons, S.F., Brady, R.L., Mohandas, N., Chasis, J.A. & Anstee, D.J. (2004) Identification of critical amino-acid residues on the erythroid intercellular adhesion molecule-4 (ICAM-4) mediating adhesion to alpha V integrins. Blood, 103, 1503–1508.
- Marini, A.M., Matassi, G., Raynal, V., Andre, B., Cartron, J.P. & Cherif-Zahar, B. (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nature Genetics, 26, 341–344.
- Merrick, M., Javelle, A., Durand, A., Severi, E., Thornton, J., Avent, N.D., Conroy, M.J. & Bullough, P.A. (2006) The Escherichia coli AmtB protein as a model system for understanding ammonium transport by Amt and Rh proteins. Transfusion Clinique et Biologique, 13, 97–102.
- Mollison, P.L., Engelfriet, C.P. & Contreras, M. (1993) Blood Transfusion in Clinical Medicine. Blackwell Science Ltd., London.
- Montesano, R., Pepper, M.S., Mohle-Steinlein, U., Risau, W., Wagner, E.F. & Orci, L. (1990) Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell, 62, 435–445.
- Mouro-Chanteloup, I., D’Ambrosio, A.M., Gane, P., Le Van Kim, C., Raynal, V., Dhermy, D., Cartron, J.P. & Colin, Y. (2002) Cell-surface expression of RhD blood group polypeptide is posttranscriptionally regulated by the RhAG glycoprotein. Blood, 100, 1038–1047.
- Mouro-Chanteloup, I., Delaunay, J., Gane, P., Nicolas, V., Johansen, M., Brown, E.J., Peters, L.L., Van Kim, C.L., Cartron, J.P. & Colin, Y. (2003) Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood, 101, 338–344.
- Nicolas, V., Le Van Kim, C., Gane, P., Birkenmeier, C., Cartron, J.P., Colin, Y. & Mouro-Chanteloup, I. (2003) Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. Journal of Biological Chemistry, 278, 25526–25533.
- Nicolas, V., Mouro-Chanteloup, I., Lopez, C., Gane, P., Gimm, A., Mohandas, N., Cartron, J.P., Le Van Kim, C. & Colin, Y. (2006) Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfusion Clinique et Biologique, 13, 23–28.
- Oldenborg, P.A., Zheleznyak, A., Fang, Y.F., Lagenaur, C.F., Gresham, H.D. & Lindberg, F.P. (2000) Role of CD47 as a marker of self on red blood cells. Science, 288, 2051–2054.
- Oldenborg, P.A., Gresham, H.D. & Lindberg, F.P. (2001) CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. Journal of Experimental Medicine, 193, 855–862.
- Rahuel, C., Filipe, A., Ritie, L., El Nemer, W., Patey-Mariaud, N., Eladari, D., Cartron, J.P., Simon-Assmann, P., Le Van Kim, C. & Colin, Y. (2008) Genetic inactivation of the laminin alpha5 chain receptor Lu/BCAM leads to kidney and intestinal abnormalities in the mouse. American Journal of Physiology. Renal Physiology, 294, F393–F406.
- Ripoche, P., Bertrand, O., Gane, P., Birkenmeier, C., Colin, Y. & Cartron, J.P. (2004) Human Rhesus-associated glycoprotein mediates facilitated transport of NH(3) into red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 17222–17227.
- Ripoche, P., Goossens, D., Devuyst, O., Gane, P., Colin, Y., Verkman, A.S. & Cartron, J.P. (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfusion Clinique et Biologique, 13, 117–122.
- Soupene, E., King, N., Feild, E., Liu, P., Niyogi, K.K., Huang, C.H. & Kustu, S. (2002) Rhesus expression in a green alga is regulated by CO(2). Proceedings of the National Academy of Sciences of the United States of America, 99, 7769–7773.
- Soupene, E., Inwood, W. & Kustu, S. (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proceedings of the National Academy of Sciences of the United States of America, 101, 7787–7792.
- Spring, F.A. & Parsons, S.F. (2000) Erythroid cell adhesion molecules. Transfusion Medicine Reviews, 14, 351–363.
- Sturgeon, P. (1970) Hematological observations on the anemia associated with blood type Rhnull. Blood, 36, 310–320.
- Subramanian, S., Parthasarathy, R., Sen, S., Boder, E.T. & Discher, D.E. (2006a) Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood, 107, 2548–2556.
- Subramanian, S., Tsai, R. & Discher, D.E. (2006b) The ‘metabolon,’ CD47, and the ‘phagocytic synapse’: molecular co-localization and species divergence. Transfusion Clinique et Biologique, 13, 31–38.
- Telen, M.J. (2005) Erythrocyte adhesion receptors: blood group antigens and related molecules. Transfusion Medicine Reviews, 19, 32–44.
- Toivanen, A., Ihanus, E., Mattila, M., Lutz, H.U. & Gahmberg, C.G. (2008) Importance of molecular studies on major blood groups--intercellular adhesion molecule-4, a blood group antigen involved in multiple cellular interactions. Biochimica et Biophysica Acta, 1780, 456–466.
- Westhoff, C.M., Siegel, D.L., Burd, C.G. & Foskett, J.K. (2004) Mechanism of genetic complementation of ammonium transport in yeast by human erythrocyte Rh-associated glycoprotein (RhAG). Journal of Biological Chemistry, 279, 17443–17448.
- Zennadi, R., Moeller, B.J., Whalen, E.J., Batchvarova, M., Xu, K., Shan, S., Delahunty, M., Dewhirst, M.W. & Telen, M.J. (2007) Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood, 110, 2708–2717.
- Zheng, B., Mills, A.A. & Bradley, A. (1999) A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Research, 27, 2354–2360.
- Zidi-Yahiaoui, N., Mouro-Chanteloup, I., D’Ambrosio, A.M., Lopez, C., Gane, P., Le van Kim, C., Cartron, J.P., Colin, Y. & Ripoche, P. (2005) Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells. Biochemical Journal, 391, 33–40.