Mucosal immunoglobulins
Corresponding Author
Jenny M. Woof
Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee, UK.
* Jenny M. Woof Division of Pathology and Neuroscience University of Dundee Medical School Ninewells Hospital Dundee DD1 9SY, UK Tel.: +44 1382 660111x33540 Fax: +44 1382 633952 E-mail: [email protected]Search for more papers by this authorJiri Mestecky
Departments of Microbiology and Medicine, University of Alabama at Birmingham, AL, USA.
Search for more papers by this authorCorresponding Author
Jenny M. Woof
Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee, UK.
* Jenny M. Woof Division of Pathology and Neuroscience University of Dundee Medical School Ninewells Hospital Dundee DD1 9SY, UK Tel.: +44 1382 660111x33540 Fax: +44 1382 633952 E-mail: [email protected]Search for more papers by this authorJiri Mestecky
Departments of Microbiology and Medicine, University of Alabama at Birmingham, AL, USA.
Search for more papers by this authorAbstract
Summary: Due to their vast surface area, the mucosal surfaces of the body represent a major site of potential attack by invading pathogens. The secretions that bathe mucosal surfaces contain significant levels of immunoglobulins (Igs), which play key roles in immune defense of these surfaces. IgA is the predominant antibody class in many external secretions and has many functional attributes, both direct and indirect, that serve to prevent infective agents such as bacteria and viruses from breaching the mucosal barrier. This review details current understanding of the structural and functional characteristics of IgA, including interaction with specific receptors (such as FcαRI, Fcα/µR, and CD71) and presents examples of the means by which certain pathogens circumvent the protective properties of this important Ig.
References
- 1 Besredka A. De la vaccination contre les etats typhoides par la voie buccale. Ann Inst Pasteur 1919; 33: 882–903.
- 2 Davies A. An investigation into the serological properties of dysentery stools. Lancet 1922; 2: 1009–1012.
- 3
Francis T Jr, Brightman IJ.
Virus-inactivating capacity of nasal secretions in the acute and convalescent stages of influenza.
Proc Soc Exp Biol Med
1941; 48: 116–117.
10.3181/00379727-48-13239P Google Scholar
- 4 Fazekas de St. Groth S, Donelley M. Studies in experimental immunology of influenza IV. The protective value of active immunization. Aust J Exp Biol Med Sci 1950; 28: 45–60.
- 5
Ehrlich P.
Ueber Immunitat durch Vererbung und Saugung.
Zeitschr f Hyg u Infekt -Krankh
1892; 12: 183–203
.
10.1007/BF02284236 Google Scholar
- 6 Gugler E, Von Muralt G. Ueber immuno-elektrophoretische Untersuchungen an Frauenmilch-Proteinen. 2. Schweiz Med Wochenschr 1959; 89: 925–929.
- 7 Hanson LÅ. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Archs Allergy Appl Immun 1961; 18: 241–267.
- 8 Mestecky J, Moro I, Kerr MA, Woof JM. Mucosal immunoglobulins. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press 2005: 153–181.
- 9 Jackson S, Mestecky J, Moldoveanu Z, Spearmean P. Appendix I: Collection and processing of human mucosal secretions. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 1829–1839.
- 10 Koshland ME. The coming of age of the immunoglobulin J chain. Ann Rev Immunol 1985; 3: 425–453.
- 11 Zikan J, Mestecky J, Kulhavy R, Bennett JC. The stoichiometry of J chain in human secretory dimeric IgA. Mol Immunol 1986; 23: 541–544.
- 12 Natvig IB, Johansen F-E, Nordeng TW, Haraldsen G, Brandtzaeg P. Mechanism for enhanced external transfer of dimeric IgA over pentameric IgM. Studies of diffusion, binding to the human polymeric Ig receptor, and epithelial transcytosis. J Immunol 1997; 159: 4330–4340.
- 13 Cunningham-Rundles C. Immunodeficiency and mucosal immunity. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 1145–1157.
- 14 Kutteh WH, Mestecky J, Wira CR. Mucosal immunity in the human female reproductive tract. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 1631–1646.
- 15 Peppard JV, Kaetzel CS, Russell MW. Phylogeny and comparative physiology of IgA. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 195–208.
- 16 Mestecky J, Blumberg RS, Kiyono H, McGhee JR. The mucosal immune system. In: WE Paul, ed. Fundamental Immunology, 5th edn. Philadelphia: Lippincott-Raven, 2003: 965–1020.
- 17 Brandtzaeg P. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 2005; 206: 32–63.
- 18 Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 2005; 206: 83–99 .
- 19 Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defense? Ann Intern Med 1987; 106: 892–899.
- 20 Mestecky J, Lue C, Russell MW. Selective transport of IgA: cellular and molecular aspects. Gastroenterol Clin North Amer 1991; 20: 441–471.
- 21
Russell MW,
Kilian M.
Biological activities of IgA. In: J Mestecky,
J Bienenstock,
ME Lamm,
L Mayer,
JR McGhee,
W Strober, eds.
Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005:
267–289.
10.1016/B978-012491543-5/50018-8 Google Scholar
- 22 Russell MW, Mestecky J. Humoral immune responses to microbial infections in the genital tract. Microbes Infect 2002; 4: 667–677.
- 23 Boyaka PN, McGhee JR, Czerkinsky C, Mestecky J. Mucosal vaccines: An overview. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 855–873.
- 24 Brandtzaeg P, Fjellanger I, Gjeruldsen ST. Human secretory immunoglobulins. I. Salivary secretions from individuals with normal or low levels of serum immunoglobulins. Scand J Immunol 1970; S12: 3–83.
- 25 Zikan J, Mestecky J, Schrohenloher RE, Tomana M, Kulhavy R. Studies on human secretary immunoglobulin A. V. Trypsin hydrolysis at elevated temperatures. Immunochemistry 1972; 9: 1185–1193.
- 26 Halpern MS, Koshland ME. The stoichiometry of J chain in human secretory IgA. J Immunol 1973; 111: 1653–1660.
- 27 Kutteh WH, Prince SJ, Phillips JO, Spenny JG, Mestecky J. Properties of immunoglobulin A in serum of individuals with liver diseases and in hepatic bile. Gastroenterology 1982; 82: 184–193.
- 28 Kutteh WH, Moldoveanu Z, Prince SJ, Kulhavy R, Alonso F, Mestecky J. Biosynthesis of J-chain in human lymphoid cells producing immunoglobulins of various isotypes. Mol Immunol 1983; 20: 967–976.
- 29 Delacroix DL, Vaerman J-P. Function of the human liver in IgA homeostasis in plasma. Ann NY Acad Sci 1983; 409: 383–401.
- 30 Svanborg Edén C, Kulhavy R, Mårild S, Prince SJ, Mestecky J. Urinary immunoglobulins in healthy individuals and children with acute pyelonephritis. Scand J Immunol 1985; 21: 305–313.
- 31 Brandtzaeg P. The role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol 1985; 22: 111–146.
- 32 Mestecky J, McGhee JR. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 1987; 40: 153–245.
- 33 Brewer JW, Corley RB. Late events in assembly determine the polymeric structure and biological activity of secretory IgM. Mol Immunol 1997; 34: 323–331.
- 34 Mestecky J, Kulhavy R, Kraus FW. Studies on human secretory immunoglobulin A. II. Subunit structure. J Immunol 1972; 108: 738–747.
- 35 Bastian A, Kratzin H, Eckart K, Hilschmann N. Intra- and interchain disulfide bridges of the human J chain in secretory immunoglobulin A. Biol Chem Hoppe Seyler 1992; 373: 1255–1263.
- 36 Krugmann S, Pleass RJ, Atkin JD, Woof JM. Structural requirements for assembly of dimeric IgA probed by site-directed mutagenesis of J chain and a cysteine residue of the α-chain CH2 domain. J Immunol 1997; 159: 244–249.
- 37 Underdown BJ, Dorrington KJ. Studies on the structural and conformational basis for the relative resistance of serum and secretory immunoglobulin A to proteolysis. J Immunol 1974; 112: 949–959.
- 38 Lindh E. Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J Immunol 1975; 114: 284–286.
- 39 Crottet P, Corthésy B. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab′)2: a possible implication for mucosal defense. J Immunol 1998; 161: 5445–5453.
- 40 Radl J, Klein F, Van Den Berg P, De Bruyn AM, Hijmans W. Binding of secretory piece to polymeric IgA and IgM paraproteins in vitro. Immunology 1971; 20: 843–852.
- 41 Weicker J, Underdown BJ. A study of the association of human secretory component with IgA and IgM proteins. J Immunol 1975; 114: 1337–1344.
- 42 Brandtzaeg P. Transport models for secretory IgA and secretory IgM. Clin Exp Immunol 1981; 44: 221–232.
- 43 Vaerman JP, Langendries A, Giffroy D, Brandtzaeg P, Kobayashi K. Lack of SC/pIgR-mediated epithelial transport of a human polymeric IgA devoid of J chain: in vitro and in vivo studies. Immunology 1998; 95: 90–96.
- 44 Mestecky J, Kulhavy R, Wright GP, Tomana M. Studies on human secretory immunoglobulin A. VI. Cyanogen bromide cleavage. J Immunol 1974; 113: 404–412.
- 45 Mostov KE, Friedlander M, Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 1984; 308: 37–43.
- 46 Zikan J, et al. Secondary structure of the immunoglobulin J chain. Proc Natl Acad Sci USA 1985; 82: 5905–5909.
- 47 Hamburger AE, West AP, Bjorkman PJ. Crystal structure of a polymeric immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. Structure 2004; 12: 1925–1935.
- 48 Frutiger S, Hughes GJ, Hanly WC, Kingzette M, Jaton JC. The amino terminal domain of rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers. J Biol Chem 1986; 261: 16673–16681.
- 49 Bakos M-A, Kurosky A, Goldblum RM. Characterization of a critical binding site for human polymeric Ig on secretory component. J Immunol 1991; 147: 3419–3426.
- 50 Hexham JM, et al. A human immunoglobulin (Ig)A Cα3 domain motif directs polymeric Ig receptor-mediated secretion. J Exp Med 1999; 189: 747–751.
- 51 Garcia-Pardo A, Lamm ME, Plaut AJ, Frangione B. Secretory component is covalently bound to a single subunit in human secretory IgA. Mol Immunol 1979; 16: 477–482.
- 52 Fallgren-Gebauer E, et al. The covalent linkage of the secretory component to IgA. Adv Exp Med Biol 1995; 371A: 625–628.
- 53 Braathen R, Sorensen V, Brandtzaeg P, Sandlie I, Johansen FE. The carboxyl-terminal domains of IgA and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. J Biol Chem 2002; 277: 42755–42762.
- 54 Geneste C, Iscaki S, Mangalo R, Pillot J. Both Fc alpha domains of human IgA are involved in in vitro interaction between secretory component and dimeric IgA. Immunol Lett 1986; 13: 221–226.
- 55 Johansen FE, Braathen R, Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. Scand J Immunol 2000; 52: 240–248.
- 56 Hendrickson BA, et al. Lack of association of secretory component with IgA in J chain-deficient mice. J Immunol 1996; 157: 750–754.
- 57 Low TL, Liu YS, Putnam FW. Structure, function, and evolutionary relationships of Fc domains of human immunoglobulins A, G, M, and E. Science 1976; 191: 390–392.
- 58 Mestecky J, Schrohenloher RE, Kulhavy R, Wright GP, Tomana M. Site of J chain attachment to human polymeric IgA. Proc Natl Acad Sci USA 1974; 71: 544–548.
- 59 Mestecky J, Schrohenloher RE. Site of attachment of J chain to human immunoglobulin M. Nature 1974; 249: 650–652.
- 60 Chintalacharuvu KR, Yu LJ, Bhola N, Kobayashi K, Fernandez CZ, Morrison SL. Cysteine residues for the attachment of the light chain in human IgA2. J Immunol 2002; 169: 5072–5077.
- 61 Atkin JD, Pleass RJ, Owens RJ, Woof JM. Mutagenesis of the human IgA1 heavy chain tailpiece that prevents dimer assembly. J Immunol 1996; 157: 156–159.
- 62 Sørensen V, Rasmussen IB, Norderhaug L, Natvig I, Michaelsen TE, Sandlie I. Effect of the IgM and IgA secretory tailpieces on polymerization and secretion of IgM and IgG. J Immunol 1996; 156: 2858–2865.
- 63 Sørensen V, Sundvold V, Michaelsen TE, Sandlie I. Polymerization of IgA and IgM: roles of Cys309/Cys414 and the secretory tailpiece. J Immunol 1999; 162: 3448–3455.
- 64 Tomana M, Niedermeier W, Mestecky J, Skvaril F. The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 1976; 13: 325–328.
- 65 Torano A, Tsuzukida Y, Liu YV, Putnam FW. Location and structural significance of the oligosaccharides in human IgA1 and IgA2 immunoglobulins. Proc Natl Acad Sci USA 1977; 74: 2301–2305.
- 66 Endo T, Mestecky J, Kulhavy R, Kobata A. Carbohydrate heterogeneity of human myeloma proteins of the IgA1 and IgA2 subclasses. Mol Immunol 1994; 31: 1415–1422.
- 67 Mattu TS, et al. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem 1998; 273: 2260–2272.
- 68 Royle L, et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 2003; 278: 20140–20153.
- 69 Field MC, Amatayakul-Chantler S, Rademacher TW, Rudd PM, Dwek RA. Structural analysis of the N-glycans from human immunoglobulin A1: comparison of normal human serum immunoglobulin A1 with that isolated from patients with rheumatoid arthritis. Biochem J 1994; 299: 261–275.
- 70 Tomana M, Mestecky J, Niedermeier W. Studies on human secretory immunoglobulins A IV. Carbohydrate composition. J Immunol 1972; 108: 1631–1636.
- 71 Mizoguchi A, Mizuochi T, Kobata A. Structures of the carbohydrate moieties of secretory component purified from human milk. J Biol Chem 1982; 257: 9612–9621.
- 72 Niedermeier W, Tomana M, Mestecky J. The carbohydrate composition of J chain from human serum and secretory IgA. Biochim Biophys Acta 1972; 257: 527–530.
- 73 Baenziger JU. Structure of the oligosaccharide of human J chain. J Biol Chem 1979; 254: 4063–4071.
- 74 Mestecky J, Russell MW. IgA Subclasses. Monogr Allergy 1986; 19: 277–301.
- 75 Kawamura S, Saitou N, Ueda S. Concerted evolution of the primate immunoglobulin α-gene through gene conversion. J Biol Chem 1992; 267: 7359–7367.
- 76 Burnett RC, Hanly WC, Zhai SK, Knight KL. The IgA heavy-chain gene family in rabbit: cloning and sequence analysis of 13 Cα genes. EMBO J 1989; 8: 4041–4047.
- 77 Skvaril F, Morell A. Distribution of IgA subclasses in sera and bone marrow plasma cells of 21 normal individuals. Adv Exp Med Biol 1974; 45: 433–435.
- 78 Crago SS, et al. Distribution of IgA1-, IgA2- and J chain-containing cells in human tissues. J Immunol 1984; 132: 16–18.
- 79 Alley CD, Nash GS, MacDermott RP. Marked in vitro spontaneous secretion of IgA by human rib bone marrow mononuclear cells. J Immunol 1982; 128: 2604–2608.
- 80 Hijmans W. Circulating IgA in humans. Adv Exp Med Biol 1987; 216B: 1169–1174.
- 81 Kett K, Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J Immunol 1986; 136: 3631–3635.
- 82 Mestecky J, et al. Comparative studies of the biological properties of human IgA subclasses. Protides Biol Fluids 1989; 36: 173–182.
- 83 Brown TA, Mestecky J. Immunoglobulin A subclass distribution of naturally occurring salivary antibodies to microbial antigens. Infect Immun 1985; 49: 459–462.
- 84 Kobayashi K, Vaerman J-P, Bazin H, Lebacq-Verheyden A-M, Heremans JF. Identification of J-chain in polymeric immunoglobulins from a variety of species by cross-reaction with rabbit antisera to human J-chain. J Immunol 1973; 111: 1590–1594.
- 85 Mikoryak CA, Margolies MN, Steiner LA. J chain in Rana catesbiana high molecular weight Ig. J Immunol 1988; 140: 4279–4285.
- 86 Kulseth MA, Rogne S. Cloning and characterization of the bovine immunoglobulin J chain cDNA and its promoter region. DNA Cell Biol 1994; 13: 37–42.
- 87 Hohman VS, Stewart SE, Willett CE, Steiner LA. Sequence and expression pattern of J chain in the amphibian, Xenopus laevis. Mol Immunol 1997; 34: 995–1002.
- 88 Hohman VS, et al. J chain in the nurse shark: implications for function in a lower vertebrate. J Immunol 2003; 170: 6016–6023.
- 89 Max EE, Korsmeyer SJ. Human J chain gene. Structure and expression in lymphoid cells. J Exp Med 1985; 161: 832–849.
- 90 Frutiger S, Hughes GJ, Paquet N, Luthy R, Jaton JC. Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. Biochemistry 1992; 31: 12643–12647.
- 91 Kaetzel CS, Mostov K. Immunoglobulin transport and the polymeric immunoglobulin receptor. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd Edn. Amsterdam: Elsevier/Academic Press, 2005: 211–250.
- 92 Wold A, et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 1990; 58: 3073–3077.
- 93 Schroten H, Stapper C, Plogmann R, Köhler H, Hacker J, Hanisch F-G. Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli are mediated by sialyloligosaccharides. Infect Immun 1998; 66: 3971–3973.
- 94 Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002; 17: 107–115.
- 95 Parkhouse RME. Immunoglobulin A biosynthesis. Intracellular accumulation of 7S subunits. FEBS Lett 1971; 16: 71.
- 96 Buxbaum JN, Zolla S, Scharff MD, Franklin EC. The synthesis and assembly of immunoglobulins by malignant human plasmocytes III. Heterogeneity of IgA polymer assembly. Eur J Immunol 1974; 4: 367.
- 97 Kutteh WH, Prince SJ, Mestecky J. Tissue origins of human polymeric and monomeric IgA. J Immunol 1982; 128: 990–995.
- 98 Moldoveanu Z, Egan ML, Mestecky J. Cellular origins of human polymeric and monomeric IgA: intracellular and secreted forms of IgA. J Immunol 1984; 133: 3156–3162.
- 99 Radl J, Schuit HRE, Mestecky J, Hijmans W. The origin of monomeric and polymeric forms of IgA in man. Adv Exp Med Biol 1974; 45: 57–65.
- 100 Brandtzaeg P. Two types of IgA immunocytes in man. Nat New Biol 1973; 243: 142–143.
- 101 Brandtzaeg P. Immunohistochemical characterization of intracellular J chain and binding site for secretory component (SC) in human immunoglobulin (Ig)-producing cells. Mol Immunol 1983; 20: 941–966.
- 102 Moro I, Iwase T, Komiyama K, Moldoveanu Z, Mestecky J. Immunoglobulin A (IgA) polymerization sites in human immunocytes: immunoelectron microscopic study. Cell Struct Funct 1990; 15: 85–91.
- 103 Hendrickson BA, et al. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J Exp Med 1995; 182: 1905–1911.
- 104 Lycke N, Erlandsson L, Ekman L, Schön K, Leanderson T. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 1999; 163: 913–919.
- 105
Erlandsson L,
Andersson K,
Sigvardsson M,
Lycke N,
Leanderson T.
Mice with an inactivated joining chain locus have perturbed IgM secretion.
Eur J Immunol
1998; 28: 2355–2365.
10.1002/(SICI)1521-4141(199808)28:08<2355::AID-IMMU2355>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 106 Erlandsson L, Akerblad P, Vingsbo-Lundberg C, Kallberg E, Lycke N, Leanderson T. Joining chain-expressing and –nonexpressing B cell populations in the mouse. J Exp Med 2001; 194: 557–570.
- 107 Munn EA, Feinstein A, Munro AJ. Electron microscope examination of free IgA molecules and of their complexes with antigen. Nature 1971; 231: 527–529.
- 108 Dourmashkin RR, Virella G, Parkhouse RME. Electron microscopy of human and mouse myeloma serum IgA. J Mol Biol 1971; 56: 207–208.
- 109 Feinstein A, Munn E, Richardson N. The three-dimensional conformation of γM and γA globulin molecules. Ann NY Acad Sci 1971; 190: 104–121.
- 110 Zagyansky YA, Gavrilova EM. Segmental flexibility of human myeloma immunoglobulin A. Immunochemistry 1974; 11: 681–682.
- 111 Dudich EI, Dudich IV, Timofeev VP. Fluorescence polarization and spin-label study of human myeloma immunoglobulins A and M. Presence of segmental flexibility. Mol Immunol 1980; 17: 1335–1339.
- 112 Liu BM, Cheung HC, Mestecky J. Nanosecond fluorescence spectroscopy of human immunoglobulin A. Biochemistry 1981; 20: 1997–2003.
- 113 Boehm MK, Woof JM, Kerr MA, Perkins SJ. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol 1999; 286: 1421–1447.
- 114 Furtado PB, et al. Solution structure determination of monomeric human IgA2 by X-ray and neutron scattering, analytical ultracentrifugation and constrained modelling: a comparison with monomeric human IgA1. J Mol Biol 2004; 338: 921–941.
- 115 Herr AB, Ballister ER, Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 2003; 423: 614–620.
- 116 Prahl JW, Abel CA, Grey HM. Carboxy-terminal structure of the α chain of human IgA myeloma proteins. Biochemistry 1971; 10: 1808–1812.
- 117 Bakos MA, Kurosky A, Czerwinski EW, Goldblum RM. A conserved binding site on the receptor for polymeric Ig is homologous to CDR1 of Ig V kappa domains. J Immunol 1993; 151: 1346–1352.
- 118 Coyne RS, Siebrecht M, Peitsch MC, Casanova JE. Mutational analysis of polymeric immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple complementarity determining region (CDR) -like loops in receptor domain I. J Biol Chem 1994; 269: 31620–31625.
- 119
Norderhaug IN,
Johansen FE,
Krajci P,
Brandtzaeg P.
Domain deletions in the human polymeric Ig receptor disclose differences between its dimeric IgA and pentameric IgM interaction.
Eur J Immunol
1999; 29: 3401–3409.
10.1002/(SICI)1521-4141(199910)29:10<3401::AID-IMMU3401>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 120 Rejnek J, Trávnícek J, Kostka J, Sterzl J, Lanc A. Study of the effect of antibodies in the intestinal tract of germ-free baby pigs. Folia Microbiol 1968; 13: 36–42.
- 121
Mestecky J,
Russell MW.
Intestinal immunoglobulin A: role in host defense. In: G Hecht, ed.
Microbial Pathogens and the Intestinal Epithelial Cell. Washington, DC: ASM Press, 2003: 95–112.
10.1128/9781555817848.ch6 Google Scholar
- 122 Russell MW, Sibley DA, Nikolova EB, Tomana M, Mestecky J. IgA antibody as a non-inflammatory regulator of immunity. Biochem Soc Trans 1997; 25: 466–470.
- 123 Brandtzaeg P, Tolo K. Mucosal penetrability enhanced by serum-derived antibodies. Nature 1977; 266: 262–263.
- 124 Savage DG. Mucosal microbiota. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 19–33.
- 125 Abraham SN, Bishop BL, Sharon N, Ofek I. Adhesion of bacteria to mucosal surfaces. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 35–48.
- 126 Renegar KB, Jackson GD, Mestecky J. In vitro comparison of the biologic activities of monoclonal monomeric IgA, polymeric IgA, and secretory IgA. J Immunol 1998; 160: 1219–1223.
- 127 Stubbe H, Berdoz J, Kraehenbuhl JP, Corthesy B. Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J Immunol 2000; 164: 1952–1960.
- 128 Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol 1995; 69: 1339–1343.
- 129 Bomsel M, et al. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 1998; 9: 277–287.
- 130 Russell MW, Bobek LA, Brock JH, et al. Innate humoral defense factors. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Stober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 73–93.
- 131 Biesbrock AR, Reddy MS, Levine MJ. Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect Immun 1991; 59: 3492–3497.
- 132 Magnusson KE, Stjernstrom I. Mucosal barrier mechanisms. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of salmonellae with intestine and granulocytes. Immunology 1982; 45: 239–248.
- 133 Russell MW, Reinholdt J, Kilian M. Anti-inflammatory activity of human IgA antibodies and their Fabα fragments: inhibition of IgG-mediated complement activation. Eur J Immunol 1989; 19: 2243–2249.
- 134 Roos A, Bouwman LH, Van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 2001; 167: 2861–2868.
- 135 Woof JM, Van Egmond M, Kerr MA. Fc receptors. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd. Edn. Amsterdam: Elsevier/Academic Press, 2005: 251–265.
- 136 Hamre R, Farstad IN, Brandtzaeg P, Morton HC. Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the Fc γ chain on myeloid cells in blood and tissue. Scand J Immunol 2003; 57: 506–516.
- 137 Kremer EJ, Kalatzis V, Baker E, Callen DF, Sutherland GR, Maliszewski CR. The gene for the human IgA Fc receptor maps to 19q13.4. Hum Genet 1992; 89: 107–108.
- 138 Woof JM, Kerr MA. IgA function – variations on a theme. Immunology 2004; 113: 175–177.
- 139 Morton HC, et al. Cloning and characterization of an IgA Fc receptor from cattle (bFcαR). Immunology 2004; 111: 204–211.
- 140 Morton HC, Pleass RJ, Storset AK, Brandtzaeg P, Woof JM. Cloning and characterization of equine CD89 and identification of the CD89 gene in chimpanzees, and rhesus macaques. Immunology 2005; 115: 74–84.
- 141 Rogers KA, Scinicariello F, Attanasio R. Identification and characterization of macaque CD89 (immunoglobulin A Fc receptor). Immunology 2004; 113: 178–186.
- 142 Maliszewski CR, March CJ, Schoenborn MA, Gimpel S, Shen L. Expression cloning of a human Fc receptor for IgA. J Exp Med 1990; 172: 1665–1672.
- 143 Ding Y, et al. Crystal structure of the ectodomain of human FcαRI. J Biol Chem 2003; 278: 27966–27970.
- 144 Carayannopoulos L, Hexham JM, Capra JD. Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Cα2 and Cα3 in human IgA1. J Exp Med 1996; 183: 1579–1586.
- 145 Pleass RJ, Dunlop JI, Anderson CM, Woof JM. Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human Fcα receptor (FcαR) CD89. J Biol Chem 1999; 274: 23508–23514.
- 146 Pleass RJ, Dehal PK, Lewis MJ, Woof JM. Limited role of charge matching in the interaction of human immunoglobulin A with the immunoglobulin A Fc receptor (FcαRI) CD89. Immunology 2003; 109: 331–335.
- 147 Wines BD, Hulett MD, Jamieson GP, Trist HM, Spratt JM, Hogarth PM. Identification of residues in the first domain of human Fcα receptor essential for interaction with IgA. J Immunol 1999; 162: 2146–2153.
- 148 Morton HC, Van Zandbergen G, Van Kooten C, Howard CJ, Van De Winkel JG, Brandtzaeg P. Immunoglobulin-binding sites of human FcαRI (CD89) and bovine Fcγ2R are located in their membrane-distal extracellular domains. J Exp Med 1999; 189: 1715–1722.
- 149 Wines BD, Sardjono CT, Trist HH, Lay CS, Hogarth PM. The interaction of FcαRI with IgA and its implications for ligand binding by immunoreceptors of the leukocyte receptor cluster. J Immunol 2001; 166: 1781–1789.
- 150 Herr AB, White CL, Milburn C, Wu C, Bjorkman PJ. Bivalent binding of IgA1 to FcαRI suggests a mechanism for cytokine activation of IgA phagocytosis. J Mol Biol 2003; 327: 645–657.
- 151 Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 2004; 4: 89–99.
- 152 Weisbart RH, Kacena A, Schuh A, Golde DW. GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 1988; 332: 647–648.
- 153 Bracke M, et al. Differential effects of the T helper cell type 2-derived cytokines IL-4 and IL-5 on ligand binding to IgG and IgA receptors expressed by human eosinophils. J Immunol 1997; 159: 1459–1465.
- 154 Van Egmond M, et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nat Med 2000; 6: 680–685.
- 155 Stewart WW, Kerr MA. The specificity of the human neutrophil IgA receptor (FcαR) determined by measurement of chemiluminescence induced by serum or secretory IgA1 or IgA2. Immunology 1990; 71: 328–334.
- 156 Van Spriel AB, et al. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunological synapse formation. Blood 2001; 97: 2478–2486.
- 157 Van Spriel AB, Leusen JH, Vile H, Van De Winkel JG. Mac-1 (CD11b/CD18) as accessory molecule for FcαR (CD89) binding of IgA. J Immunol 2002; 169: 3831–3836.
- 158 Lang ML, Shen L, Wade WF. γ-chain dependent recruitment of tyrosine kinases to membrane rafts by the human IgA receptor FcαR. J Immunol 1999; 163: 5391–5398.
- 159 Lang ML, et al. IgA Fc receptor (FcαR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem J 2002; 364: 517–525.
- 160 Monteiro RC, Van De Winkel JGJ. IgA Fc receptors. Annu Rev Immunol 2003; 21: 177–204.
- 161 Van Egmond M, et al. Human immunoglobulin A receptor (FcαRI, CD89) function in transgenic mice requires both FcR γ chain and CR3 (CD11b/CD18). Blood 1999; 93: 4387–4394.
- 162 Pasquier B, et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of Fcγ ITAM. Immunity 2005; 22: 31–42.
- 163 Shibuya A, et al. Fcα/µ receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000; 1: 441–446.
- 164
Sakamoto N, et al.
A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues.
Eur J Immunol
2001; 31: 1310–1316.
10.1002/1521-4141(200105)31:5<1310::AID-IMMU1310>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 165 Nakahara J, Seiwa C, Shibuya A, Aiso S, Asou H. Expression of Fc receptor for immunoglobulin M in oligodendrocytes and myelin of mouse central nervous system. Neurosci Lett 2003; 337: 73–76.
- 166 Shimizu Y, et al. Fcα/µ receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on Chromosome 1. Immunogenetics 2001; 53: 709–711.
- 167 Kita H, et al. Does IgE bind to and activate eosinophils from patients with allergy? J Immunol 1999; 162: 6901–6911.
- 168 Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ. IgA-induced eosinophil degranulation. J Immunol 1989; 142: 2392–2400.
- 169 Monteiro RC, Hostoffer RW, Cooper MD, Bonner JR, Gartland GL, Kubagawa H. Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J Clin Invest 1993; 92: 1681–1685.
- 170 Lamkhioued B, Gounni AS, Gruart V, Pierce A, Capron A, Capron M. Human eosinophils express a receptor for secretory component. Role in secretory IgA-dependent activation. Eur J Immunol 1995; 25: 117–125.
- 171 Motegi Y, Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J Immunol 1998; 161: 4340–4346.
- 172 Monteiro RC, et al. Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends Mol Med 2002; 8: 464–468.
- 173 Moura IC, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig) A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 2001; 194: 417–425.
- 174 Haddad E, et al. Enhanced expression of the CD71 mesangial IgA1 receptor in Berger disease and Henoch-Schönlein nephritis: association between CD71 expression and IgA deposits. J Am Soc Nephrol 2003; 14: 327–337.
- 175 Pasquier B, Lepelletier Y, Baude C, Hermine O, Monteiro RC. Differential expression and function of IgA receptors (CD89 and CD71) during maturation of dendritic cells. J Leukoc Biol 2004; 76: 1134–1141.
- 176 Quan CP, Berneman A, Pires R, Avrameas S, Bouvet JP. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun 1997; 65: 3997–4004.
- 177 Dunn-Walters D, Boursier L, Spencer J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol Immunol 2000; 37: 107–113.
- 178 Fernandez C, Alarcon-Riquelme ME, Abedi-Valugerdi M, Sverremark E, Cortes V. Polyreactive binding of antibodies generated by polyclonal B cell activation. I. Polyreactivity could be caused by differential glycosylation of immunoglobulins. Scand J Immunol 1997; 45: 231–239.
- 179 Fernandez C, Alarcon-Riquelme ME, Sverremark E. Polyreactive binding of antibodies generated by polyclonal B cell activation. II. Crossreactive and monospecific antibodies can be generated from an identical Ig rearrangement by differential glycosylation. Scand J Immunol 1997; 45: 240–247.
- 180 Kilian M, Russell MW. Microbial evasion of IgA functions. In: J Mestecky, J Bienenstock, ME Lamm, L Mayer, JR McGhee, W Strober, eds. Mucosal Immunology, 3rd edn. Amsterdam: Elsevier/Academic Press, 2005: 291–303.
- 181 Senior BW, Dunlop JI, Batten MR, Kilian M, Woof JM. Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases. Infect Immun 2000; 68: 463–469.
- 182 Batten MR, Senior BW, Kilian M, Woof JM. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect Immun 2003; 71: 1462–1469.
- 183 Senior BW, Woof JM. Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases. Infect Immun 2005; 73: 1515–1522.
- 184 Senior BW, Woof JM. The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases. J Immunol 2005; 174: 7792–7799.
- 185 Chintalacharuvu KR, et al. Cleavage of the human immunoglobulin A1 (IgA1) hinge region by IgA1 proteases requires structures in the Fc region of IgA. Infect Immun 2003; 71: 2563–2570.
- 186 Frithz E, Héden L-O, Lindahl G. Extensive sequence homology between IgA receptor and M proteins in Streptococcus pyogenes. Mol Microbiol 1989; 3: 1111–1119.
- 187 Stenberg L, O'Toole PW, Mestecky J, Lindahl G. Molecular characterization of protein Sir, a streptococcal cell surface protein that binds both immunoglobulin A and immunoglobulin G. J Biol Chem 1994; 269: 13458–13464.
- 188 Héden L-O, Frithz E, Lindahl G. Molecular characterization of an IgA receptor from group B streptococci: sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur J Immunol 1991; 21: 1481–1490.
- 189 Jerlström PG, Chhatwal GS, Timmis KN. The IgA-binding beta antigen of the c protein complex of Group B streptococci: sequence determination of its gene and detection of two binding regions. Mol Microbiol 1991; 5: 843–849.
- 190 Pleass RJ, Areschoug T, Lindahl G, Woof JM. Streptococcal IgA-binding proteins bind in the Cα2-Cα3 interdomain region and inhibit binding of IgA to human CD89. J Biol Chem 2001; 276: 8197–8204.