Determination of Stress–Strain Behaviour of Magnesium Alloy AZ31 under Variable Thermomechanical Loading
Corresponding Author
Domen Šeruga
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Correspondence
Domen Šeruga, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000, Ljubljana, Slovenia.
Email: [email protected]
Search for more papers by this authorTomaž Bešter
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Search for more papers by this authorMarko Nagode
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Search for more papers by this authorJernej Klemenc
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Search for more papers by this authorCorresponding Author
Domen Šeruga
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Correspondence
Domen Šeruga, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000, Ljubljana, Slovenia.
Email: [email protected]
Search for more papers by this authorTomaž Bešter
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Search for more papers by this authorMarko Nagode
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Search for more papers by this authorJernej Klemenc
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, 1000 Slovenia
Search for more papers by this authorAbstract
Growing environmental demands and higher fuel efficiency encourage the use of new light-weight load-bearing materials even for operation under rougher environmental conditions. Consequently, as the materials used in the vital load-bearing components of the chassis, brake system or exhaust system are subjected to thermomechanical fatigue during the operation due to variable mechanical and thermal loads, it is crucial for design engineers and CAE analysts to understand the cyclic behaviour of new materials under such conditions. Here we have analysed the stress–strain behaviour of magnesium alloy AZ31 and the influence of variable thermomechanical loads. A uniaxially loaded flat specimen has been first mechanically loaded at −25°C. The temperature was then increased to 150°C whilst the variable mechanical loading remained unchanged. The tests have been strain-controlled using a video extensometer. The stress–strain behaviour of the magnesium alloy AZ31 has been then investigated considering both variable temperature and variable mechanical load.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author, DŠ.
REFERENCES
- 1Iftikhar SH, Albinmousa J. A method for assessing critical plane-based multiaxial fatigue damage models. Fatigue Fract Eng Mater Struct. 2018; 41(1): 235-245.
- 2Xu T, Yang Y, Peng X, Song J, Pan F. Overview of advancement and development trend on magnesium alloy. J Magnes Alloy. 2019; 7(3): 536-544.
- 3Meng L, Chen W, Feng M. An experimental study of creep-ratchetting behavior of rolled AZ31B magnesium alloy at room temperature. Fatigue Fract Eng Mater Struct. 2020; 43(2): 417-428.
- 4Abbassi F, Srinivasan M, Loganathan C, Narayanasamy R, Gupta M. Experimental and numerical analyses of magnesium alloy hot workability. J Magnes Alloy. 2016; 4(4): 295-301.
- 5Dallmeier J, Huber O, Saage H, Eigenfeld K. Uniaxial cyclic deformation and fatigue behavior of AM50 magnesium alloy sheet metals under symmetric and asymmetric loadings. Mater Design. 2015; 70: 10-30.
- 6Roostaei AA, Jahed H. A cyclic small-strain plasticity model for wrought Mg alloys under multiaxial loading: Numerical implementation and validation. Int J Mech Sci. 2018; 145: 318-329.
- 7Chamos AN, Pantelakis SG, Haidemenopoulos GN, Kamoutsi E. Tensile and fatigue behaviour of wrought magnesium alloys AZ31 and AZ61. Fatigue Fract Eng Mater Struct. 2008; 31(9): 812-821.
- 8Kabirian F, Khan AS, Gnäupel-Herlod T. Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading condition. Int J Plasticity. 2015; 68: 1-20.
- 9Poerschke D. The Effects of forging on the microstructure and tensile properties of magnesium alloys AZ31 and ZK60. Cleveland, OH, USA: Case Western Reserve University; 2009.
- 10Tadataka K, Masami S. Automotive applications of magnesium alloy. Mater Sci Forum. 2003; 419–422: 67-72.
10.4028/www.scientific.net/MSF.419-422.67 Google Scholar
- 11Harandi SE, Idris MH, Jafari H. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy. Mater Design. 2011; 32(5): 2596-2603.
- 12Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed. 2018; 87: 68-79.
- 13Liu Y, Wen J, He J, Li H. Enhanced mechanical properties and corrosion resistance of biodegradable Mg-Zn-Zr-Gd alloy by Y microalloying. J Mater Sci. 2020; 55(4): 1813-1825.
- 14Grilli M, Bellezze T, Gamsjäger E, et al. Solutions for critical raw materials under extreme conditions: A review. Materials. 2017; 10(3): 285. https://doi.org/10.3390/ma10030285
- 15Salminen J, Garbarino E, Orveillon G, et al. In: GA Blengini, MLF Mathieux, M Nyberg, HM Viegas, eds. Recovery of Critical and Other Raw Materials From Mining Waste and Landfills: State of Play on Existing Practices. Luxembourg: Publications Office of the European Union; 2019.
- 16Shuyan W, Zesheng J, Ming H, Zhiqiu H, Chunying T, Mingzhong W. Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Prepared by Solid State Recycling. Rare Metal Mat Eng. 2018; 47(3): 736-741.
- 17Mendis CL, Singh A. Magnesium Recycling: To the Grave and Beyond. JOM. 2013; 65: 1283-1284.
- 18Robson JD. Critical Assessment 9: Wrought magnesium alloys. Mater Sci Technol. 2015; 31(3): 257-264.
- 19Zhu G, Wang L, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition. Int J Plasticity. 2019; 120: 164-179.
- 20Chen J, Yao W, Gao D. Fatigue life evaluation of tension-compression asymmetric material using local stress-strain method. Fatigue Fract Eng Mater Struct. 2020; 43(9): 1994-2005.
- 21Klemenc J, Šeruga D, Nagode M. A durability prediction for the magnesium alloy AZ31 based on plastic and total energy. Metals. 2019; 9(9): 973. https://doi.org/10.3390/met9090973
- 22Šolinc U, Klemenc J, Nagode M, Šeruga D. A direct approach to modelling the complex response of magnesium AZ31 alloy sheets to variable strain amplitude loading using Prandtl-Ishlinskii operators. Int J Fatigue. 2019; 127: 291-304.
- 23Klemenc J, Šeruga D, Nagode A, Nagode M. Comprehensive modelling of the hysteresis loops and strain energy density for low-cycle fatigue-life predictions of the AZ31 magnesium alloy. Materials. 2019; 12(22): 3692. https://doi.org/10.3390/ma12223692
- 24Anes V, Reis L, de Freitas M. Evaluation of a phenomenological elastic-plastic approach for magnesium alloys under multiaxial loading conditions. Fatigue Fract Eng Mater Struct. 2019; 42(11): 2468-2486.
- 25Šeruga D, Bešter T, Nagode M, Klemenc J. Behavior of magnesium alloy AZ31 under variable thermomechanical conditions. In: M Decker, R Heim, CM Sonsiono, eds. Fourth International Conference on Material and Component Performance under Variable Amplitude Loading (VAL4). DVM: Berlin; 2020: 477-486.
- 26Ebeling T, Hartig C, Laser T, Bormann R. Material law parameter determination of magnesium alloys. Mat Sci Eng A-struct. 2009; 527(1-2): 272-280.
- 27Wang H, Dong S, Lv G. Plastic deformation characteristics of an Mg-3Al-1Zn alloy at low temperatures. Mater Design. 2016; 92: 143-150.
- 28Denk J, Whitmore L, Huber O, Diwald O, Saage H. Concept of the highly strained volume for fatigue modelling of wrought magnesium alloys. Int J Fatigue. 2018; 117: 283-291.
- 29Liu Y, Mao P, Zhang F, Liu Z, Wang Z. Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation. Philos Mag. 2018; 98(12): 1068-1086.
- 30Šolinc U, Klemenc J, Nagode M, Šeruga D. A fast and increment independent technique for continuous calculation of the strain energy dissipated during cyclic loading applied to magnesium alloy AZ31. Int J Fatigue. 2020; 139: 105779. https://doi.org/10.1016/j.ijfatigue.2020.105779
- 31Mehmanparast A, Taylor J, Brennan F, Tavares I. Experimental investigation of mechanical and fracture properties of offshore wind monopile weldments: SLIC interlaboratory test results. Fatigue Fract Eng Mater Struct. 2018; 41(12): 2485-2501.
- 32Sul JH, Prusty BG, Pan JW. A fatigue life prediction model for Chopped Strand Mat GRP at elevated temperatures. Fatigue Fract Eng Mater Struct. 2010; 33(8): 513-521.
- 33Zhao Z, Ramesh M, Raabe D, Cuitio AM, Radovitzky R. Investigation of three-dimensional aspects of grainscale plastic surface deformation of an aluminum oligocrystal. Int J Plasticity. 2008; 24(12): 2278-2297.
- 34Herrera-Solaz V, Patriarca L, Foletti S, Segurado J, Niffenegger M. Microstructure-based modelling and Digital Image Correlation measurement of strain fields in austenitic stainless steel 316L during tension loading. Mat Sci Eng A-struct. 2019; 751: 99-106.
- 35Abuzaid WZ, Sangid MD, Carroll JD, Sehitoglu H, Lambros J. Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids. 2012; 60(6): 1201-1220.
- 36La Rosa G, Lo Savio F, Giudice F, Clienti C. Marino Cugno Garrano A. Energetic analysis of fatigue hysteresis by thermographic and digital image correlation methodologies. Fatigue Fract Eng Mater Struct. 2020; 43(11): 2597-2607.
- 37Šeruga D, Nagode M, Klemenc J. Eliminating friction between flat specimens and an antibuckling support during cyclic tests using a simple sensor. Meas Sci Technol. 2019; 30(9):095102. https://doi.org/10.1088/1361-6501/ab1e35
- 38Šeruga D, Nagode M, Klemenc J. Stress-strain response determination during incremental step tests and variable loadings on flat specimens. Technologies. 2019; 7: 53. https://doi.org/10.3390/technologies7030053
- 39Haibach E. Betriebsfestigkeit - Verfahren und Daten zur Bauteilberechnung. Berlin Heidelberg: Springer-Verlag; 2006.
- 40Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Math Comp. 1965; 19(90): 297-301.
- 41Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes: The art of scientific computing. New York, NY: Cambridge University Press; 2002.
- 42Wang Q, Ri S, Xia P, Liu Z. Automatic detection of defect positions including interface dislocations and strain measurement in Ge/Si heterostructure from moire phase processing of TEM image. Opt Lasers Eng. 2020; 129: 106077. https://doi.org/10.1016/j.optlaseng.2020.106077
- 43Dieringa H. Influence of cryogenic temperatures on the microstructure and mechanical properties of magnesium alloys: a review. Metals. 2017; 7(2): 38. https://doi.org/10.3390/met7020038