Computer vision for automated seizure detection and classification: A systematic review
Brandon M. Brown
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorAidan M. H. Boyne
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorAdel M. Hassan
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorAnthony K. Allam
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorR. James Cotton
Shirley Ryan Ability Lab, Chicago, Illinois, USA
Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
Search for more papers by this authorCorresponding Author
Zulfi Haneef
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
Correspondence
Zulfi Haneef, Department of Neurology, Baylor College of Medicine, 7200 Cambridge St #9A, Houston, TX 77030, USA.
Email: [email protected]
Search for more papers by this authorBrandon M. Brown
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorAidan M. H. Boyne
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorAdel M. Hassan
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorAnthony K. Allam
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Search for more papers by this authorR. James Cotton
Shirley Ryan Ability Lab, Chicago, Illinois, USA
Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
Search for more papers by this authorCorresponding Author
Zulfi Haneef
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
Correspondence
Zulfi Haneef, Department of Neurology, Baylor College of Medicine, 7200 Cambridge St #9A, Houston, TX 77030, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Computer vision (CV) shows increasing promise as an efficient, low-cost tool for video seizure detection and classification. Here, we provide an overview of the fundamental concepts needed to understand CV and summarize the structure and performance of various model architectures used in video seizure analysis. We conduct a systematic literature review of the PubMed, Embase, and Web of Science databases from January 1, 2000 to September 15, 2023, to identify the strengths and limitations of CV seizure analysis methods and discuss the utility of these models when applied to different clinical seizure phenotypes. Reviews, nonhuman studies, and those with insufficient or poor quality data are excluded from the review. Of the 1942 records identified, 45 meet inclusion criteria and are analyzed. We conclude that the field has shown tremendous growth over the past 2 decades, leading to several model architectures with impressive accuracy and efficiency. The rapid and scalable detection offered by CV models holds the potential to reduce sudden unexpected death in epilepsy and help alleviate resource limitations in epilepsy monitoring units. However, a lack of standardized, thorough validation measures and concerns about patient privacy remain important obstacles for widespread acceptance and adoption. Investigation into the performance of models across varied datasets from clinical and nonclinical environments is an essential area for further research.
CONFLICT OF INTEREST STATEMENT
Z.H. receives research support but no salary support from NEL, which develops and markets the Nelli device discussed in this paper. We confirm that we have read the Journal's position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.
Open Research
DATA AVAILABILITY STATEMENT
Data abstracted for the study are available upon reasonable request.
REFERENCES
- 1Beghi E, Giussani G, Nichols E, Abd-Allah F, Abdela J, Abdelalim A, et al. Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019; 18: 357–375. https://doi.org/10.1016/S1474-4422(18)30454-X
- 2Sveinsson O, Andersson T, Mattsson P, Carlsson S, Tomson T. Clinical risk factors in SUDEP: a nationwide population-based case-control study. Neurology. 2020; 94: e419–e429. https://doi.org/10.1212/WNL.0000000000008741
- 3Harden C, Tomson T, Gloss D, Buchhalter J, Cross JH, Donner E, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology and the American Epilepsy Society. Neurology. 2017; 88: 1674–1680. https://doi.org/10.1212/WNL.0000000000003685
- 4Gedzelman ER, LaRoche SM. Long-term video EEG monitoring for diagnosis of psychogenic nonepileptic seizures. Neuropsychiatr Dis Treat. 2014; 10: 1979–1986. https://doi.org/10.2147/NDT.S49531
- 5Pediaditis M, Tsiknakis M, Leitgeb N. Vision-based motion detection, analysis and recognition of epileptic seizures–a systematic review. Comput Methods Programs Biomed. 2012; 108: 1133–1148. https://doi.org/10.1016/j.cmpb.2012.08.005
- 6Abbasi B, Goldenholz DM. Machine learning applications in epilepsy. Epilepsia. 2019; 60: 2037–2047. https://doi.org/10.1111/epi.16333
- 7Ahmedt-Aristizabal D, Fookes C, Dionisio S, Nguyen K, Cunha JPS, Sridharan S. Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: a focused survey. Epilepsia. 2017; 58: 1817–1831. https://doi.org/10.1111/epi.13907
- 8Olmi B, Frassineti L, Lanata A, Manfredi C. Automatic detection of epileptic seizures in neonatal intensive care units through EEG, ECG and video recordings: a survey. IEEE Access. 2021; 9: 138174–138191. https://doi.org/10.1109/ACCESS.2021.3118227
- 9Ulate-Campos A, Coughlin F, Gaínza-Lein M, Fernández IS, Pearl PL, Loddenkemper T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure. 2016; 40: 88–101. https://doi.org/10.1016/j.seizure.2016.06.008
- 10Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71. https://doi.org/10.1136/bmj.n71
- 11Li Z, Martins da Silva A, Cunha JPS. Movement quantification in epileptic seizures: a new approach to video-EEG analysis. IEEE Trans Biomed Eng. 2002; 49: 565–573. https://doi.org/10.1109/TBME.2002.1001971
- 12Zhan C, Duan X, Xu S, Song Z, Luo M. An improved moving object detection algorithm based on frame difference and edge detection. Fourth Int Conf Image Graph ICIG. 2007; 2007: 519–523. https://doi.org/10.1109/ICIG.2007.153
10.1109/ICIG.2007.153 Google Scholar
- 13Hanosh O, Ansari R, Issa NP, Enis Cetin A. Convulsive Movement Detection using Low-Resolution Thermopile Sensor Array. 2020 IEEECVF Conf. Comput Vis Pattern Recognit Workshop CVPRW, 2020, p. 1217–1223 https://doi.org/10.1109/CVPRW50498.2020.00158
10.1109/CVPRW50498.2020.00158 Google Scholar
- 14Pediaditis M, Tsiknakis M, Koumakis L, Karachaliou M, Voutoufianakis S, Vorgia P. Vision-based absence seizure detection. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 2012: 65–68. https://doi.org/10.1109/EMBC.2012.6345872
- 15Ntonfo GMK, Ferrari G, Raheli R, Pisani F. Low-complexity image processing for real-time detection of neonatal clonic seizures. IEEE Trans Inf Technol Biomed. 2012; 16: 375–382. https://doi.org/10.1109/TITB.2012.2186586
- 16Cattani L, Kouamou Ntonfo GM, Lofino F, Ferrari G, Raheli R, Pisani F. Maximum-likelihood detection of neonatal clonic seizures by video image processing. 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), 2014, p. 1–5. https://doi.org/10.1109/ISMICT.2014.6825219
10.1109/ISMICT.2014.6825219 Google Scholar
- 17Pisani F, Spagnoli C, Pavlidis E, Facini C, Kouamou Ntonfo GM, Ferrari G, et al. Real-time automated detection of clonic seizures in newborns. Clin Neurophysiol. 2014; 125: 1533–1540. https://doi.org/10.1016/j.clinph.2013.12.119
- 18Cattani L, Saini HP, Ferrari G, Pisani F, Raheli R. SmartCED: an android application for neonatal seizures detection. 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2016, p. 1–6 https://doi.org/10.1109/MeMeA.2016.7533708
10.1109/MeMeA.2016.7533708 Google Scholar
- 19Karayiannis NB, Tao G. Improving the extraction of temporal motion strength signals from video recordings of neonatal seizures. Proc IEEE Conf Adv Video Signal Based Surveill. 2003; 2003: 87–92. https://doi.org/10.1109/AVSS.2003.1217906
10.1109/AVSS.2003.1217906 Google Scholar
- 20Cunha JPS, Choupina HMP, Rocha AP, Fernandes JM, Achilles F, Loesch AM, et al. NeuroKinect: a novel low-cost 3Dvideo-EEG system for epileptic seizure motion quantification. PLoS One. 2016; 11:e0145669. https://doi.org/10.1371/journal.pone.0145669
- 21Jin S, Xu L, Xu J, Wang C, Liu W, Qian C, et al. Whole-body human pose estimation in the wild. 2020.
- 22Karayiannis NB, Xiong Y, Tao G, Frost JD, Wise MS, Hrachovy RA, et al. Automated detection of videotaped neonatal seizures of epileptic origin. Epilepsia. 2006; 47: 966–980. https://doi.org/10.1111/j.1528-1167.2006.00571.x
- 23Cuppens K, Chen C-W, Wong KB-Y, Van de Vel A, Lagae L, Ceulemans B, et al. Using Spatio-temporal interest points (STIP) for myoclonic jerk detection in nocturnal video. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 2012: 4454–4457. https://doi.org/10.1109/EMBC.2012.6346955
- 24Kalitzin S, Petkov G, Velis D, Vledder B, Lopes da Silva F. Automatic segmentation of episodes containing epileptic Clonic seizures in video sequences. IEEE Trans Biomed Eng. 2012; 59: 3379–3385. https://doi.org/10.1109/TBME.2012.2215609
- 25Geertsema EE, Thijs RD, Gutter T, Vledder B, Arends JB, Leijten FS, et al. Automated video-based detection of nocturnal convulsive seizures in a residential care setting. Epilepsia. 2018; 59(Suppl 1): 53–60. https://doi.org/10.1111/epi.14050
- 26Ahmedt-Aristizabal D, Fookes C, Denman S, Nguyen K, Sridharan S, Dionisio S. Aberrant epileptic seizure identification: a computer vision perspective. Seizure. 2019; 65: 65–71. https://doi.org/10.1016/j.seizure.2018.12.017
- 27Hyppönen J, Hakala A, Annala K, Zhang H, Peltola J, Mervaala E, et al. Automatic assessment of the myoclonus severity from videos recorded according to standardized unified myoclonus rating scale protocol and using human pose and body movement analysis. Seizure. 2020; 76: 72–78. https://doi.org/10.1016/j.seizure.2020.01.014
- 28van Westrhenen A, Petkov G, Kalitzin SN, Lazeron RHC, Thijs RD. Automated video-based detection of nocturnal motor seizures in children. Epilepsia. 2020; 61: S36–S40. https://doi.org/10.1111/epi.16504
- 29Cattani L, Alinovi D, Ferrari G, Raheli R, Pavlidis E, Spagnoli C, et al. Monitoring infants by automatic video processing: a unified approach to motion analysis. Comput Biol Med. 2017; 80: 158–165. https://doi.org/10.1016/j.compbiomed.2016.11.010
- 30Ahmedt-Aristizabal D, Denman S, Nguyen K, Sridharan S, Dionisio S, Fookes C. Understanding Patients' behavior: vision-based analysis of seizure disorders. IEEE J Biomed Health Inform. 2019; 23: 2583–2591. https://doi.org/10.1109/JBHI.2019.2895855
- 31Karayiannis NB, Tao G, Xiong Y, Sami A, Varughese B, Frost JD, et al. Computerized motion analysis of videotaped neonatal seizures of epileptic origin. Epilepsia. 2005; 46: 901–917. https://doi.org/10.1111/j.1528-1167.2005.56504.x
- 32Aghaei H, Kiani MM, Aghajan H. Epileptic seizure detection based on video and EEG recordings. 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2017, p. 1–4 https://doi.org/10.1109/BIOCAS.2017.8325156
10.1109/BIOCAS.2017.8325156 Google Scholar
- 33Armand Larsen S, Terney D, Østerkjerhuus T, Vinding Merinder T, Annala K, Knight A, et al. Automated detection of nocturnal motor seizures using an audio-video system. Brain Behav. 2022; 12:e2737. https://doi.org/10.1002/brb3.2737
- 34Martin JR, Gabriel PG, Gold JJ, Haas R, Davis SL, Gonda DD, et al. Optical flow estimation improves automated seizure detection in neonatal EEG. J Clin Neurophysiol. 2022; 39: 235–239. https://doi.org/10.1097/WNP.0000000000000767
- 35Zheng C, Wu W, Chen C, Yang T, Zhu S, Shen J, et al. Deep learning-based human pose estimation: a survey. 2022 https://doi.org/10.48550/arXiv.2012.13392
10.48550/arXiv.2012.13392 Google Scholar
- 36Wang J, Tan S, Zhen X, Xu S, Zheng F, He Z, et al. Deep 3D human pose estimation: a review. Comput Vis Image Underst. 2021; 210:103225. https://doi.org/10.1016/j.cviu.2021.103225
- 37Karayiannis NB, Srinivasan S, Bhattacharya R, Wise MS, Frost JD, Mizrahi EM. Extraction of motion strength and motor activity signals from video recordings of neonatal seizures. IEEE Trans Med Imaging. 2001; 20: 965–980. https://doi.org/10.1109/42.952733
- 38Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012; 25: 1097–1105.
- 39Tompson J, Goroshin R, Jain A, LeCun Y, Bregler C. Efficient object localization using convolutional networks. 2015 https://doi.org/10.48550/arXiv.1411.4280
10.48550/arXiv.1411.4280 Google Scholar
- 40Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Vol 2. New York: Springer; 2009.
10.1007/978-0-387-84858-7 Google Scholar
- 41Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. J Chemometr. 2004; 18: 275–285. https://doi.org/10.1002/cem.873
- 42Breiman L. Random forests. Mach Learn. 2001; 45: 5–32. https://doi.org/10.1023/A:1010933404324
- 43Krauss C, Do XA, Huck N. Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500. Eur J Oper Res. 2017; 259: 689–702. https://doi.org/10.1016/j.ejor.2016.10.031
- 44Pérez-García F, Scott C, Sparks R, Diehl B, Ourselin S. Transfer learning of deep spatiotemporal networks to model arbitrarily long videos of seizures. 2021 https://doi.org/10.1007/978-3-030-87240-3_32
10.1007/978?3?030?87240?3_32 Google Scholar
- 45Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language models are few-shot learners. 2020.
- 46Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017; 30: 6000–6010.
- 47Dai Z, Liu H, Le QV, Tan M. CoAtNet: Marrying Convolution and Attention for All Data Sizes. 2021.
- 48Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16 words: transformers for image recognition at scale. 2021.
- 49Sonoda S, Murata N. Neural network with unbounded activation functions is universal approximator. Appl Comput Harmon Anal. 2017; 43: 233–268.
- 50Achilles F, Ichim A-E, Coskun H, Tombari F, Noachtar S, Navab N. Patient MoCap: human pose estimation under blanket occlusion for hospital monitoring applications. In: S Ourselin, L Joskowicz, MR Sabuncu, G Unal, W Wells, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Cham: Springer International Publishing; 2016. p. 491–499. https://doi.org/10.1007/978-3-319-46720-7_57
10.1007/978-3-319-46720-7_57 Google Scholar
- 51Achilles F, Tombari F, Belagiannis V, Loesch AM, Noachtar S, Navab N. Convolutional neural networks for real-time epileptic seizure detection. Comput Methods Biomech Biomed Eng Imaging Vis. 2018; 6: 264–269. https://doi.org/10.1080/21681163.2016.1141062
10.1080/21681163.2016.1141062 Google Scholar
- 52Lyashenko V. Cross-validation in machine learning: how to do it right. NeptuneAi 2022. https://neptune.ai/blog/cross-validation-in-machine-learning-how-to-do-it-right (accessed March 7, 2023)
- 53Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the international league against epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58: 522–530. https://doi.org/10.1111/epi.13670
- 54Geertsema EE, Visser GH, Viergever MA, Kalitzin SN. Automated remote fall detection using impact features from video and audio. J Biomech. 2019; 88: 25–32. https://doi.org/10.1016/j.jbiomech.2019.03.007
- 55Tufenkjian K, Lüders HO. Seizure semiology: its value and limitations in localizing the epileptogenic zone. J Clin Neurol. 2012; 8: 243–250. https://doi.org/10.3988/jcn.2012.8.4.243
- 56Li J, Zhen X, Liu X, Ouyang G. Classifying normal and abnormal status based on video recordings of epileptic patients. ScientificWorldJournal. 2014; 2014:459636. https://doi.org/10.1155/2014/459636
- 57Mehta D, Sivathamboo S, Simpson H, Kwan P, O'Brien T, Ge Z. Privacy-preserving early detection of epileptic seizures in videos. 2023.
- 58Garção VM, Abreu M, Peralta AR, Bentes C, Fred A, da Silva HP. A novel approach to automatic seizure detection using computer vision and independent component analysis. Epilepsia. 2023; 64: 2472–2483. https://doi.org/10.1111/epi.17677
- 59Yang Y, Sarkis RA, Atrache RE, Loddenkemper T, Meisel C. Video-based detection of generalized tonic-Clonic seizures using deep learning. IEEE J Biomed Health Inform. 2021; 25: 2997–3008. https://doi.org/10.1109/JBHI.2021.3049649
- 60Hanosh O, Ansari R, Younis K, Cetin AE. Real-time epileptic seizure detection during sleep using passive infrared sensors. IEEE Sens J. 2019; 19: 6467–6476. https://doi.org/10.1109/JSEN.2019.2907664
- 61Alqadi K, Sankaraneni R, Thome U, Kotagal P. Semiology of hypermotor (hyperkinetic) seizures. Epilepsy Behav. 2016; 54: 137–141. https://doi.org/10.1016/j.yebeh.2015.11.017
- 62Hou J-C, Thonnat M, Bartolomei F, McGonigal A. Automated video analysis of emotion and dystonia in epileptic seizures. Epilepsy Res. 2022; 184:106953. https://doi.org/10.1016/j.eplepsyres.2022.106953
- 63Moro M, Pastore VP, Marchesi G, Proserpio P, Tassi L, Castelnovo A, et al. Automatic video analysis and classification of sleep-related Hypermotor seizures and disorders of arousal. Epilepsia. 2023; 64: 1653–1662. https://doi.org/10.1111/epi.17605
- 64Martini ML, Valliani AA, Sun C, Costa AB, Zhao S, Panov F, et al. Deep anomaly detection of seizures with paired stereoelectroencephalography and video recordings. Sci Rep. 2021; 11: 7482. https://doi.org/10.1038/s41598-021-86891-y
- 65Kumar A, Sharma S. Complex Partial Seizure. StatPearls, Treasure Island (FL): StatPearls Publishing; 2022.
- 66Ahmedt-Aristizabal D, Nguyen K, Denman S, Sarfraz MS, Sridharan S, Dionisio S, et al. Vision-based mouth motion analysis in epilepsy: a 3D perspective. Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 1625–1629. https://doi.org/10.1109/EMBC.2019.8857656
- 67Ahmedt-Aristizabal D, Sarfraz MS, Denman S, Nguyen K, Fookes C, Dionisio S, et al. Motion Signatures for the Analysis of Seizure Evolution in Epilepsy. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, p. 2099–2105 https://doi.org/10.1109/EMBC.2019.8857743
10.1109/EMBC.2019.8857743 Google Scholar
- 68Ahmedt-Aristizabal D, Fookes C, Nguyen K, Denman S, Sridharan S, Dionisio S. Deep facial analysis: a new phase I epilepsy evaluation using computer vision. Epilepsy Behav. 2018; 82: 17–24. https://doi.org/10.1016/j.yebeh.2018.02.010
- 69Ahmedt-Aristizabal D, Nguyen K, Denman S, Sridharan S, Dionisio S, Fookes C. Deep motion analysis for epileptic seizure classification. Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018: 3578–3581. https://doi.org/10.1109/EMBC.2018.8513031
- 70Ahmedt-Aristizabal D, Fookes C, Denman S, Nguyen K, Fernando T, Sridharan S, et al. A hierarchical multimodal system for motion analysis in patients with epilepsy. Epilepsy Behav. 2018; 87: 46–58. https://doi.org/10.1016/j.yebeh.2018.07.028
- 71Karácsony T, Loesch-Biffar AM, Vollmar C, Noachtar S, Cunha JPS. A deep learning architecture for epileptic seizure classification based on object and action recognition. ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, p. 4117–4121 https://doi.org/10.1109/ICASSP40776.2020.9054649
10.1109/ICASSP40776.2020.9054649 Google Scholar
- 72Karácsony T, Loesch-Biffar AM, Vollmar C, Rémi J, Noachtar S, Cunha JPS. Novel 3D video action recognition deep learning approach for near real time epileptic seizure classification. Sci Rep. 2022; 12:19571. https://doi.org/10.1038/s41598-022-23133-9
- 73Maia P, Hartl E, Vollmar C, Noachtar S, Silva Cunha JP. Epileptic seizure classification using the NeuroMov database. 2019 The 6th IEEE Portuguese Meeting on Bioengineering (ENBENG 2019), p. 1–4 https://doi.org/10.1109/ENBENG.2019.8692465
10.1109/ENBENG.2019.8692465 Google Scholar
- 74Matricardi S, Verrotti A, Chiarelli F, Cerminara C, Curatolo P. Current advances in childhood absence epilepsy. Pediatr Neurol. 2014; 50: 205–212. https://doi.org/10.1016/j.pediatrneurol.2013.10.009
- 75Sathyanarayana S, Satzoda RK, Sathyanarayana S, Thambipillai S. Identifying epileptic seizures based on a template-based eyeball detection technique. 2015 IEEE International Conference on Image Processing (ICIP), 2015, p. 4689–4693 https://doi.org/10.1109/ICIP.2015.7351696
10.1109/ICIP.2015.7351696 Google Scholar
- 76Pothula PK, Marisetty S, Rao M. A real-time seizure classification system using computer vision techniques. 2022 IEEE International Systems Conference (SysCon 2022) 2022, p. 1–6 https://doi.org/10.1109/SysCon53536.2022.9773923
10.1109/SysCon53536.2022.9773923 Google Scholar
- 77Li Y-Y, Wang S-J, Hung Y-P. A vision-based system for in-sleep upper-body and head pose classification. Sensors. 2022; 22:2014. https://doi.org/10.3390/s22052014
10.3390/s22052014 Google Scholar
- 78Lombardi N, Scévola L, Sarudiansky M, Giagante B, Gargiulo A, Alonso N, et al. Differential semiology based on video electroencephalography monitoring between psychogenic nonepileptic seizures and temporal lobe epileptic seizures. J Acad Consult Liaison Psychiatry. 2021; 62: 22–28. https://doi.org/10.1016/j.psym.2020.07.003
- 79Huff JS, Murr N. Psychogenic nonepileptic seizures. StatPearls, Treasure Island (FL): StatPearls Publishing; 2022.
- 80Hou J-C, Bartolomei F, Thonnat M. A multi-stream approach for seizure classification with knowledge distillation. 2021, p. 1–8. https://doi.org/10.1109/AVSS52988.2021.9663770
10.1109/AVSS52988.2021.9663770 Google Scholar
- 81Hou J-C, McGonigal A, Bartolomei F, Thonnat M. A self-supervised pre-training framework for vision-based seizure classification. ICASSP 2022–2022 IEEE International Conference on Acoustics. Speech Signal Process. ICASSP, 2022, p. 1151–1155 https://doi.org/10.1109/ICASSP43922.2022.9746325
10.1109/ICASSP43922.2022.9746325 Google Scholar
- 82Magaudda A, Laganà A, Calamuneri A, Brizzi T, Scalera C, Beghi M, et al. Validation of a novel classification model of psychogenic nonepileptic seizures by video-EEG analysis and a machine learning approach. Epilepsy Behav. 2016; 60: 197–201. https://doi.org/10.1016/j.yebeh.2016.03.031
- 83Pressler RM, Cilio MR, Mizrahi EM, Moshé SL, Nunes ML, Plouin P, et al. The ILAE classification of seizures and the epilepsies: modification for seizures in the neonate. Position paper by the ILAE task force on neonatal seizures. Epilepsia. 2021; 62: 615–628. https://doi.org/10.1111/epi.16815
- 84Eguchi K, Yaguchi H, Nakakubo S, Nakajima M, Ueda Y, Egawa K, et al. Video-based detection of epileptic spasms in west syndrome using a deep neural network: a pilot case study. J Neurol Sci. 2023; 449:120671. https://doi.org/10.1016/j.jns.2023.120671
- 85Ogura Y, Hayashi H, Nakashima S, Null ZS, Shibanoki T, Shimatani K, et al. A Neural Network Based Infant Monitoring System to Facilitate Diagnosis of Epileptic Seizures. Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015: 5614–5617. https://doi.org/10.1109/EMBC.2015.7319665
- 86Shum J, Friedman D. Commercially available seizure detection devices: a systematic review. J Neurol Sci. 2021; 428:117611. https://doi.org/10.1016/j.jns.2021.117611
- 87Lennard S, Newman R, McLean B, Jory C, Cox D, Young C, et al. Improving nocturnal event monitoring in people with intellectual disability in community using an artificial intelligence camera. Epilepsy Behav Rep. 2023; 22:100603. https://doi.org/10.1016/j.ebr.2023.100603
- 88Basnyat P, Mäkinen J, Saarinen JT, Peltola J. Clinical utility of a video/audio-based epilepsy monitoring system Nelli. Epilepsy Behav. 2022; 133:108804. https://doi.org/10.1016/j.yebeh.2022.108804
- 89Smith PEM. Epilepsy: mimics, borderland and chameleons. Pract Neurol. 2012; 12: 299–307. https://doi.org/10.1136/practneurol-2012-000304
- 90Karakas C, Modiano Y, Van Ness PC, Gavvala JR, Pacheco V, Fadipe M, et al. Home video prediction of epileptic vs. nonepileptic seizures in US veterans. Epilepsy Behav. 2021; 117:107811. https://doi.org/10.1016/j.yebeh.2021.107811
- 91Tatum WO, Hirsch LJ, Gelfand MA, Acton EK, LaFrance WC, Duckrow RB, et al. Assessment of the predictive value of outpatient smartphone videos for diagnosis of epileptic seizures. JAMA Neurol. 2020; 77: 1–9. https://doi.org/10.1001/jamaneurol.2019.4785