Imaging biomarkers of posttraumatic epileptogenesis
Rachael Garner
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Search for more papers by this authorMarianna La Rocca
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Search for more papers by this authorPaul Vespa
Division of Neurosurgery, Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
Search for more papers by this authorNigel Jones
Department of Neuroscience, Van Cleef Centre for Nervous Diseases, Monash University, Clayton, VIC, Australia
Search for more papers by this authorMartin M. Monti
Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
Search for more papers by this authorArthur W. Toga
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Search for more papers by this authorCorresponding Author
Dominique Duncan
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Correspondence
Dominique Duncan, Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue #210, Los Angeles, CA 90033, USA.
Email: [email protected]
Search for more papers by this authorRachael Garner
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Search for more papers by this authorMarianna La Rocca
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Search for more papers by this authorPaul Vespa
Division of Neurosurgery, Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
Search for more papers by this authorNigel Jones
Department of Neuroscience, Van Cleef Centre for Nervous Diseases, Monash University, Clayton, VIC, Australia
Search for more papers by this authorMartin M. Monti
Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
Search for more papers by this authorArthur W. Toga
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Search for more papers by this authorCorresponding Author
Dominique Duncan
Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
Correspondence
Dominique Duncan, Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue #210, Los Angeles, CA 90033, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Traumatic brain injury (TBI) affects 2.5 million people annually within the United States alone, with over 300 000 severe injuries resulting in emergency room visits and hospital admissions. Severe TBI can result in long-term disability. Posttraumatic epilepsy (PTE) is one of the most debilitating consequences of TBI, with an estimated incidence that ranges from 2% to 50% based on severity of injury. Conducting studies of PTE poses many challenges, because many subjects with TBI never develop epilepsy, and it can be more than 10 years after TBI before seizures begin. One of the unmet needs in the study of PTE is an accurate biomarker of epileptogenesis, or a panel of biomarkers, which could provide early insights into which TBI patients are most susceptible to PTE, providing an opportunity for prophylactic anticonvulsant therapy and enabling more efficient large-scale PTE studies. Several recent reviews have provided a comprehensive overview of this subject (Neurobiol Dis, 123, 2019, 3; Neurotherapeutics, 11, 2014, 231). In this review, we describe acute and chronic imaging methods that detect biomarkers for PTE and potential mechanisms of epileptogenesis. We also describe shortcomings in current acquisition methods, analysis, and interpretation that limit ongoing investigations that may be mitigated with advancements in imaging techniques and analysis.
CONFLICT OF INTERESTS
None of the authors has any conflict of interest to disclose. We confirm that we have read the Journal's position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.
REFERENCES
- 1 Centers for Disease Control and Prevention (CDC). Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to prevent a serious public health problem. Atlanta, GA: Centers for Disease Control and Prevention, 2003.
- 2Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1999; 40: 584–9.
- 3Englander J, Bushnik T, Wright JM, Jamison L, Duong TT. Mortality in late post-traumatic seizures. J Neurotrauma. 2009; 26: 1471–7.
- 4Verellen RM, Cavazos JE. Post-traumatic epilepsy: an overview. Therapy. 2010; 7: 527–31.
- 5Englander J, Cifu DX, Diaz-arrastia R. Seizures after traumatic brain injury. Arch Phys Med Rehabil. 2015; 95: 1223–4.
- 6Frey LC. Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia. 2003; 44: 11–7.
- 7Pitkanen A, Engel JJ. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014; 11: 231–41.
- 8Engel J Jr, Pitkänen A, Loeb JA, Dudek FE, Bertram EH 3rd, Cole AJ, et al. Epilepsy biomarkers. Epilepsia. 2013; 54: 61–9.
- 9Tubi MA, Lutkenhoff E, Blanco MB, McArthur D, Villablanca P, Ellingson B, et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol Dis. 2018; 123: 115–21.
- 10Temkin NR, Dikmen SS, Anderson GD, Wilensky AJ, Holmes MD, Cohen W, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg. 1999; 91: 593–600.
- 11Temkin NR, Anderson GD, Winn HR, Ellenbogen RG, Britz GW, Schuster J, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007; 6(1): 29–38.
- 12Engel J. Epileptogenesis, traumatic brain injury, and biomarkers. Neurobiol Dis. 2019; 123: 3–7.
- 13Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, et al. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014; 37: 59–70.
- 14Lowenstein DH. Epilepsy after head injury: an overview. Epilepsia. 2009; 50: 4–9.
- 15Angeleri F, Majkowski J, Cacchiò G, Sobieszek A, D'Acunto S, Gesuita R, et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia. 1999; 40: 1222–30.
- 16Englander J, Bushnik T, Duong TT, Cifu DX, Zafonte R, Wright J, et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003; 84: 365–73.
- 17Haltiner AM, Temkin NR, Dikmen SS. Risk of seizure recurrence after the first late posttraumatic seizure. Arch Phys Med Rehabil. 1997; 78: 835–40.
- 18Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. How to translate time: the temporal aspects of rodent and human pathobiological processes in traumatic brain injury. J Neurotrauma. 2019; 36: 1724–37.
- 19Russell WR. Cerebral involvement in head injury. Brain. 1932; 55: 549–603.
- 20Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017; 140: 1692–705.
- 21Buriticá E, Villamil L, Guzmán F, Escobar MI, García-Cairasco N, Pimienta HJ. Changes in calcium-binding protein expression in human cortical contusion tissue. J Neurotrauma. 2009; 26: 2145–55.
- 22Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, et al. Epileptogenesis in experimental models. Epilepsia. 2007; 48: 13–20.
- 23Garner R, La Rocca M, Barisano G, Toga AW, Duncan D, Vespa P. A machine learning model to predict seizure susceptibility from resting-state fMRI connectivity. Proc Modeling Simul Med Symposium. 2019; 14: 1–11.
- 24Duncan D, Barisano G, Cabeen R, Sepehrband F, Garner R, Braimah A, et al. Analytic tools for post-traumatic epileptogenesis biomarker search in multimodal dataset of an animal model and human patients. Front Neuroinform. 2018; 12: 86.
- 25Crone JS, Bio BJ, Vespa PM, Lutkenhoff ES, Monti MM. Restoration of thalamo-cortical connectivity after brain injury: recovery of consciousness, complex behavior, or passage of time? J Neurosci Res. 2018; 96: 671–87.
- 26Lutkenhoff ES, McArthur DL, Hua X, Thompson PM, Vespa PM, Monti MM. Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury. Neuroimage Clin. 2013; 3: 396–404.
- 27Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015; 127: 45–66.
- 28D'Alessandro R, Ferrara R, Benassi G, Lenzi PL, Sabattini L. Computed tomographic scans in posttraumatic epilepsy. Arch Neurol. 1988; 45: 42–3.
- 29D'Alessandro R, Tinuper P, Ferrara R, Cortelli P, Pazzaglia P, Sabattini L, et al. CT scan prediction of late post-traumatic epilepsy. J Neurol Neurosurg Psychiatry. 1982; 45: 1153–5.
- 30Yuh EL, Mukherjee P, Lingsma HF, Yue JK, Ferguson AR, Gordon WA, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2013; 73: 224–35.
- 31Cornford EM, Oldendorf WH. Epilepsy and the blood-brain barrier. Adv Neurol. 1986; 44: 787–812.
- 32Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004; 24: 7829–36.
- 33Dadas A, Janigro D. Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis. 2019; 123: 20–6.
- 34Librizzi L, Noè F, Vezzani A, de Curtis M, Ravizza T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol. 2012; 72: 82–90.
- 35van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007; 130: 521–34.
- 36Mendes NF, Pansani AP, Carmanhães ERF, Tange P, Meireles JV, Ochikubo M, et al. The blood-brain barrier breakdown during acute phase of the pilocarpine model of epilepsy is dynamic and time-dependent. Front Neurol. 2019; 10: 382.
- 37Shultz SR, Cardamone L, Liu YR, Hogan RE, Maccotta L, Wright DK, et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia. 2014; 54: 1240–50.
- 38Kharatishvili I, Immonen R, Gröhn O, Pitkänen A. Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain. 2007; 130: 3155–68.
- 39Immonen R, Kharatishvili I, Gröhn O, Pitkänen A. MRI biomarkers for post-traumatic epileptogenesis. J Neurotrauma. 2013; 30: 1305–9.
- 40Kumar R, Gupta RK, Husain M, Vatsal DK, Chawla S, Rathore RK, et al. Magnetization transfer MR imaging in patients with posttraumatic epilepsy. AJNR Am J Neuroradiol. 2003; 24: 218–24.
- 41Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012; 53: 1877–86.
- 42Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011; 2011: 765923.
- 43Koepp MJ, Årstad E, Bankstahl JP, Dedeurwaerdere S, Friedman A, Potschka H, et al. Neuroinflammation imaging markers for epileptogenesis. Epilepsia. 2017; 58(Suppl 3): 11–9.
- 44Gupta RK, Saksena S, Agarwal A, Hasan KM, Husain M, Gupta V, et al. Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia. 2005; 46: 1465–71.
- 45Irimia A, Goh SY, Torgerson CM, Vespa P, Van Horn JD. Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness and connectivity after traumatic brain injury. J Neurosurg Sci. 2014; 58: 129–44.
- 46Coulter DA, Rafiq A, Shumate M, Gong QZ, DeLorenzo RJ, Lyeth BG. Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res. 1996; 26: 81–91.
- 47Sierra A, Laitinen T, Gröhn O, Pitkänen A. Diffusion tensor imaging of hippocampal network plasticity. Brain Struct Funct. 2015; 220: 781–801.
- 48Immonen R, Harris NG, Wright D, Johnston L, Manninen E, Smith G, et al. Imaging biomarkers of epileptogenecity after traumatic brain injury – Preclinical frontiers. Neurobiol Dis. 2019; 123: 75–85.
- 49Laitinen T, Sierra A, Bolkvadze T, Pitkänen A, Gröhn O. Diffusion tensor imaging detects chronic microstructural changes in white and grey matter after traumatic brain injury in rat. Front Neurosci. 2015; 9: 128.
- 50Laitinen T, Sierra A, Pitkänen A, Gröhn O. Diffusion tensor MRI of axonal plasticity in the rat hippocampus. NeuroImage. 2010; 51: 521–30.
- 51Salo RA, Miettinen T, Laitinen T, Gröhn O, Sierra A. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat – histological validation with Fourier-based analysis. NeuroImage. 2017; 152: 221–36.
- 52Bendlin BB, Ries ML, Lazar M, Alexander AL, Dempsey RJ, Rowley HA, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage. 2008; 42: 503–14.
- 53Sidaros A, Engberg AW, Sidaros K, Liptrot MG, Herning M, Petersen P, et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008; 131: 559–72.
- 54Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007; 130: 2508–19.
- 55Irimia A, Wang B, Aylward SR, Prastawa MW, Pace DF, Gerig G, et al. Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. Neuroimage Clin. 2012; 1: 1–17.
- 56Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma. 1995; 12: 565–72.
- 57Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. Modeling the impact of lesions in the human brain. PLoS Comput Biol. 2009; 5: e1000408.
- 58Hayes JP, Bigler ED, Verfaellie M. Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc. 2016; 22: 120–37.
- 59Mishra AM, Bai H, Gribizis A, Blumenfeld H. Neuroimaging biomarkers of epileptogenesis. Neurosci Lett. 2011; 497: 194–204.
- 60Gröhn O, Sierra A, Immonen R, Laitinen T, Lehtimäki K, Airaksinen A, et al. Multimodal MRI assessment of damage and plasticity caused by status epilepticus in the rat brain. Epilepsia. 2011; 52(Suppl 8): 57–60.
- 61Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle V, De Boissezon X, et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011; 134: 2233–47.
- 62Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N, et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol. 2013; 70: 845–51.
- 63Tang L, Ge Y, Sodickson DK, Miles L, Zhou Y, Reaume J, et al. Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology. 2011; 260: 831–40.
- 64Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De Boissezon X, et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci. 2011; 31: 13442–51.
- 65Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA. Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp Neurol. 2016; 277: 124–38.
- 66Mishra AM, Bai X, Sanganahalli BG, Waxman SG, Shatillo O, Grohn O, et al. Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One. 2014; 9: e95280.
- 67Iraji A, Benson RR, Welch RD, O'Neil BJ, Woodard JL, Ayaz SI, et al. Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. J Neurotrauma. 2015; 32: 1031–45.
- 68Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage. 2012; 59: 511–8.
- 69Mayer AR, Ling JM, Allen EA, Klimaj SD, Yeo RA, Hanlon FM. Static and dynamic intrinsic connectivity following mild traumatic brain injury. J Neurotrauma. 2014; 32: 1046–55.
- 70Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012; 265: 882–92.
- 71Messé A, Caplain S, Pélégrini-Issac M, Blancho S, Lévy R, Aghakhani N, et al. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One. 2013; 8: e65470.
- 72Xiao H, Yang Y, Xi JH. Structural and functional connectivity in traumatic brain injury. Neural Regen Res. 2015; 10: 2062–71.
- 73O'Neill TJ, Davenport EM, Murugesan G, Montillo A, Maldjian JA. Applications of resting state functional MR imaging to traumatic brain injury. Neuroimaging Clin N Am. 2017; 27: 685–96.
- 74Simister RJ, Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia. 2002; 43: 1021–31.
- 75Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007; 81: 89–131.
- 76Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R. N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma. 2001; 18: 977–91.
- 77Tallan HH. Studies on the distribution of N-acetyl-L-aspartic acid in brain. J Biol Chem. 1957; 224: 41–5.
- 78Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, et al. Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology. 1999; 52: 1384–91.
- 79Filibian M, Frasca A, Maggioni D, Micotti E, Vezzani A, Ravizza T. In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia. 2012; 53: 1907–16.
- 80Terpstra M, Cheong I, Lyu T, Deelchand DK, Emir UE, Bednařík P, et al. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn Reson Med. 2016; 76: 1083–91.
- 81Wellard RM, Briellmann RS, Prichard JW, Syngeniotis A, Jackson GD. Myoinositol abnormalities in temporal lobe epilepsy. Epilepsia. 2003; 44: 815–21.
- 82Croall I, Smith FE, Blamire AM. Magnetic resonance spectroscopy for traumatic brain injury. Top Magn Reson Imaging. 2015; 24: 267–74.
- 83Stagg CJ, Bachtiar V, Johansen-Berg H. What are we measuring with GABA magnetic resonance spectroscopy? Commun Integr Biol. 2011; 4: 573–5.
- 84Yang L, Benardo LS. Epileptogenesis following neocortical trauma from two sources of disinhibition. J Neurophysiol. 1997; 78: 2804–10.
- 85Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N, et al. Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia. 2012; 53: 1233–44.
- 86Amhaoul H, Hamaide J, Bertoglio D, Reichel SN, Verhaeghe J, Geerts E, et al. Brain inflammation in a chronic epilepsy model: evolving pattern of the translocator protein during epileptogenesis. Neurobiol Dis 2015; 82: 526–39.
- 87Russmann V, Brendel M, Mille E, Helm-Vicidomini A, Beck R, Günther L, et al. Identification of brain regions predicting epileptogenesis by serial [(18)F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy. Neuroimage Clin. 2017; 15: 35–44.
- 88Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008; 38: 227–39.
- 89Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997; 86: 241–51.
- 90Vespa PM, McArthur DL, Xu Y, Eliseo M, Etchepare M, Dinov I, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010; 75: 792–8.
- 91Ling JM, Peña A, Yeo RA, Merideth FL, Klimaj S, Gasparovic C, et al. Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective. Brain. 2012; 135: 1281–92.
- 92Wang B, Prastawa M, Irimia A, Chambers MC, Sadeghi N, Vespa PM, et al. Analyzing imaging biomarkers for traumatic brain injury using 4d modeling of longitudinal MRI. Proc IEEE Int Symp Biomed Imaging. 2013; 2013: 1392–5.
- 93Schnakers C, Lutkenhoff ES, Bio BJ, McArthur DL, Vespa PM, Monti MM. Acute EEG spectra characteristics predict thalamic atrophy after severe TBI. J Neurol Neurosurg Psychiatry. 2019; 90: 617–9.
- 94Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging. NeuroImage. 2011; 58: 177–88.
- 95Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012; 61: 1000–16.
- 96Halefoglu AM, Yousem DM. Susceptibility weighted imaging: clinical applications and future directions. World J Radiol. 2018; 10: 30–45.
- 97Bagley LJ, McGowan JC, Grossman RI, Sinson G, Kotapka M, Lexa FJ, et al. Magnetization transfer imaging of traumatic brain injury. J Magn Reson Imaging. 2000; 11: 1–8.
10.1002/(SICI)1522-2586(200001)11:1<1::AID-JMRI1>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 98Ellingson BM, Yao J, Raymond C, Chakhoyan A, Khatibi K, Salamon N, et al. pH-weighted molecular MRI in human traumatic brain injury (TBI) using amine proton chemical exchange saturation transfer echoplanar imaging (CEST EPI). Neuroimage Clin. 2019; 22: e101736.
- 99Bilal M, Anis H, Khan N, Qureshi I, Shah J, Kadir KA. Reduction of motion artifacts in the recovery of undersampled DCE MR images using data binning and L+S decomposition. Biomed Res Int. 2019; 2019: 6139785.
- 100Immonen R, Smith G, Brady RD, Wright D, Johnston L, Harris NG, et al. Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Res. 2019; 150: 46–57.
- 101Iraji A, Chen H, Wiseman N, Welch RD, O'Neil BJ, Haacke EM, et al. Compensation through functional hyperconnectivity: a longitudinal connectome assessment of mild traumatic brain injury. Neural Plast. 2016; 2016: 4072402.
- 102Robins G, Pattison P, Kalish Y, Lusher D. An introduction to exponential random graph (p*) models for social networks. Soc Networks. 2007; 29: 173–91.
- 103Goodreau SM, Kitts JA, Morris M. Birds of a Feather, Or Friend of a Friend? Using exponential random graph models to investigate adolescent social networks. Demography. 2009; 46: 103–25.
- 104Dell'Italia J, Johnson MA, Vespa PM, Monti MM. Network analysis in disorders of consciousness: four problems and one proposed solution (exponential random graph models). Front Neurol. 2018; 9: 439.
- 105Duncan D, Vespa P, Pitkänen A, Braimah A, Lapinlampi N, Toga AW. Big data sharing and analysis to advance research in post-traumatic epilepsy. Neurobiol Dis. 2018; 123: 127–36.
- 106Pitkänen A, Ekolle Ndode-Ekane X, Lapinlampi N, Puhakka N. Epilepsy biomarkers – Toward etiology and pathology specificity. Neurobiol Dis. 2018; 123: 42–58.
- 107Saletti PG, Ali I, Casillas-Espinosa PM, Semple BD, Lisgaras CP, Moshé SL, et al. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis. 2018; 123: 86–99.