Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future
Sok-Leng Kang MBBS, MRCPCH, MSc
Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
Search for more papers by this authorAimee Armstrong MD, FACC, FSCAI
The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
Search for more papers by this authorGregor Krings MD, PHD
Children's Heart Center, Utrecht University, Utrecht, Netherlands
Search for more papers by this authorCorresponding Author
Lee Benson MD, FRCPC, FACC, FSCAI
Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
Correspondence
Lee Benson, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada, M5G 1X8.
Email: [email protected]
Search for more papers by this authorSok-Leng Kang MBBS, MRCPCH, MSc
Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
Search for more papers by this authorAimee Armstrong MD, FACC, FSCAI
The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
Search for more papers by this authorGregor Krings MD, PHD
Children's Heart Center, Utrecht University, Utrecht, Netherlands
Search for more papers by this authorCorresponding Author
Lee Benson MD, FRCPC, FACC, FSCAI
Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
Correspondence
Lee Benson, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada, M5G 1X8.
Email: [email protected]
Search for more papers by this authorFunding information
Sok-Leng Kang has no disclosures.
Aimee Armstrong and Lee Benson have received no funding for this publication and research granted from Siemens Medical Solutions USA, Inc.
Gregor Krings has received no funding for this publication and he is a member of Siemens Healthineers Advisory Board.
Abstract
Three-dimensional rotational angiography (3D-RA) enables volumetric imaging through rotation of the C-arm of an angiographic system and real-time 3D reconstruction during cardiac catheterization procedures. In the field of congenital heart disease (CHD), 3D-RA has gained considerable traction, owing to its capability for enhanced visualization of spatial relationships in complex cardiac morphologies and real time image guidance in an intricate interventional environment. This review provides an overview of the current applications, strengths, and limitations of 3D-RA acquisition in the management of CHD and potential future directions. In addition, issues of dosimetry, radiation exposure, and optimization strategies will be reviewed. Further implementation of 3D-RA will be driven by patient benefits relative to existing 3D imaging capabilities and fusion techniques balanced against radiation exposure.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest with the contents of the article.
REFERENCES
- 1Simpson J, Lopez L, Acar P, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017; 30: 1-27.
- 2Puranik R, Muthurangu V, Celermajer DS, Taylor AM. Congenital heart disease and multi-modality imaging. Heart Lung Circ. 2010; 19: 133-144.
- 3Samyn MM. A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. Int J Cardiovasc Imaging. 2004; 20: 569-578.
- 4Crean A. Cardiovascular MR and CT in congenital heart disease. Heart. 2007; 93: 1637-1647.
- 5Glatz AC, Zhu X, Gillespie MJ, Hanna BD, Rome JJ. Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovasc Imaging. 2010; 3: 1149-1157.
- 6Kapins C, Barbosa F, Silva C, Lima V, Carvalho A. Use of rotational 3D (3D-RA) in congenital heart disease patients: experience with 53 cases. Rev Bras Cardiol Invasiva. 2010; 18: 199-203.
10.1590/S2179-83972010000200015 Google Scholar
- 7Glöckler M, Koch A, Greim V, et al. The value of flat-detector computed tomography during catheterisation of congenital heart disease. Eur Radiol. 2011; 21: 2511-2520.
- 8Glockler M, Halbfabeta J, Koch A, Achenbach S, Dittrich S. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease–a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv. 2013; 82: 436-442.
- 9Aldoss O, Fonseca BM, Truong UT, et al. Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol. 2016; 37: 1211-1221.
- 10Fagan TE, Truong UT, Jone P-N, et al. Multimodality 3-dimensional image integration for congenital cardiac catheterization. Methodist Debakey Cardiovasc J. 2014; 10: 68-76.
- 11Campeau L, Saltiel J. Rotational cineangiocardiography. Am J Roentgenol Radium Ther Nucl Med. 1964; 91: 544-549.
- 12Schad N. Brunner H. [Cineangiography of congenital heart defects with rotation of the patient] Med Audio Vis. 1966; 5: 59-64.
- 13Cornelis G, Bellet A, van Eygen B, Roisin P, Libon E. Rotational multiple sequence roentgenography of intracranial aneurysms. Acta Radiol Diagn. 1972; 13: 74-76.
- 14Thron A, Voigt K. Rotational cerebral angiography: procedure and value. Am J Neuroradiol. 1983; 4: 289-291.
- 15Carsin M, Chabert E, Croci S, Romeas R, Scarabin JM. [The role of 3-dimensional reconstructions in the angiographic evaluation of cerebral vascular malformations: 3D morphometry] J Neuroradiol. 1997; 24: 137-140.
- 16Anxionnat R, Bracard S, Macho J, et al. 3D angiography. Clinical interest. First applications in interventional neuroradiology. J Neuroradiol. 1998; 25: 251-262.
- 17Irie K, Murayama Y, Saguchi T, et al. Dynact soft-tissue visualization using an angiographic C-arm system: initial clinical experience in the operating room. Neurosurgery. 2008; 62: 266-272; discussion 272.
- 18Biasi L, Ali T, Thompson M. Intra-operative dynaCT in visceral-hybrid repair of an extensive thoracoabdominal aortic aneurysm. Eur J Cardiothorac Surg. 2008; 34: 1251-1252.
- 19Kim H-C, Chung JW, Park JH, et al. Transcatheter arterial chemoembolization for hepatocellular carcinoma: prospective assessment of the right inferior phrenic artery with C-arm CT. J Vasc Interv Radiol. 2009; 20: 888-895.
- 20Murayama Y, Irie K, Saguchi T, et al. Robotic digital subtraction angiography systems within the hybrid operating room. Neurosurgery. 2011; 68: 1427-1433; discussion 1433.
- 21Tommasini G, Camerini A, Gatti A, Derchi G, Bruzzone A, Vecchio C. Panoramic coronary angiography. J Am Coll Cardiol. 1998; 31: 871-877.
- 22Raman SV, Morford R, Neff M, et al. Rotational X-ray coronary angiography. Catheter Cardiovasc Interv. 2004; 63: 201-207.
- 23Orlov MV, Hoffmeister P, Chaudhry GM, et al. Three-dimensional rotational angiography of the left atrium and esophagus–A virtual computed tomography scan in the electrophysiology lab? Heart Rhythm. 2007; 4: 37-43.
- 24Panzer J, Taeymans Y, De Wolf D. Three-dimensional rotational angiography of a patient with pulmonary atresia intact septum and coronary fistulas. Pediatr Cardiol. 2008; 29: 686-687.
- 25Icrp R, Gupta R, et al. Radiological protection in cone beam computed tomography (CBCT). ICRP publication 129. Ann ICRP. 2015; 44: 9-127.
- 26Pedra CA, Fleishman C, Pedra SF, Cheatham JP. New imaging modalities in the catheterization laboratory. Curr Opin Cardiol. 2011; 26: 86-93.
- 27Berman D. Role of three-dimensional rotational angiography in imaging the pulmonary arteries. In: G Butera, J Cheatham, C Pedra, D Schranz, G Tulzer, eds. Fetal and Hybrid Procedures in Congenital Heart Diseases. Cham, Switzerland: Springer International Publishing; 2016: 728-747.
10.1007/978-3-319-40088-4_36 Google Scholar
- 28Feldkamp L, Davis LC, Kress J. Practical cone-beam algorithm. J Opt Soc Am. 1984; 6: 612-619.
- 29Schulze R, Heil U, Groβ D, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011; 40: 265-273.
- 30Sharma N, Ray AmitK, Shukla KK, et al. Automated medical image segmentation techniques. J Med Phys. 2010; 35: 3-14.
- 31Schoenhagen P, Numburi U, Halliburton SS, et al. Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. Eur Heart J. 2010; 31: 2727-2740.
- 32Aboulhosn J. Rotational angiography and 3D overlay in transcatheter congenital interventions. Interv Cardiol. 2013; 5: 405-410.
10.2217/ica.13.30 Google Scholar
- 33Krishnaswamy A, Tuzcu EM, Kapadia SR. Integration of MDCT and fluoroscopy using C-arm computed tomography to guide structural cardiac interventions in the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2015; 85: 139-147.
- 34Krishnaswamy A, Tuzcu EM, Kapadia SR. Three-dimensional computed tomography in the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2011; 77: 860-865.
- 35Goreczny S, Moszura T, Dryzek P, et al. Three-dimensional image fusion guidance of percutaneous pulmonary valve implantation to reduce radiation exposure and contrast dose: a comparison with traditional two-dimensional and three-dimensional rotational angiographic guidance. Neth Heart J. 2017; 25: 91-99.
- 36Goreczny S, Dryzek P, Moszura T, Kuhne T, Berger F, Schubert S. 3D image fusion for live guidance of stent implantation in aortic coarctation – magnetic resonance imaging and computed tomography image overlay enhances interventional technique. Adv Interv Cardiol. 2017; 13: 269-272.
- 37Goreczny S, Dryzek P, Morgan GJ, Lukaszewski M, Moll JA, Moszura T. Novel three-dimensional image fusion software to facilitate guidance of complex cardiac catheterization: 3D image fusion for interventions in CHD. Pediatr Cardiol. 2017; 38: 1133-1142.
- 38Parimi M, Buelter J, Thanugundla V, et al. Feasibility and validity of printing 3d heart models from rotational angiography. Pediatr Cardiol. 2018; 39: 653–658.
- 39Bai M, Liu B, Mu H, Liu X, Jiang Y. The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol. 2012; 81: 3577-3580.
- 40Brody AS, Frush DP, Huda W, Brent RL; American Academy of Pediatrics Section on R. Radiation risk to children from computed tomography. Pediatrics. 2007; 120: 677-682.
- 41Glöckler M, Koch A, Halbfaß J, et al. Assessment of cavopulmonary connections by advanced imaging: value of flat-detector computed tomography. Cardiol Young. 2013; 23: 18-26.
- 42Berman DP, Khan DM, Gutierrez Y, Zahn EM. The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Catheter Cardiovasc Interv. 2012; 80: 922-930.
- 43Borik S, Volodina S, Chaturvedi R, Lee KJ, Benson LN. Three-dimensional rotational angiography in the assessment of vascular and airway compression in children after a cavopulmonary anastomosis. Pediatr Cardiol. 2015; 36: 1083-1089.
- 44Stenger A, Dittrich S, Glockler M. Three-dimensional rotational angiography in the pediatric cath lab: optimizing aortic interventions. Pediatr Cardiol. 2016; 37: 528-536.
- 45Starmans NL, Krings GJ, Molenschot MM, van der Stelt F, Breur JM. Three-dimensional rotational angiography in children with an aortic coarctation. Neth Heart J. 2016; 24: 666-674.
- 46Pockett CR, Moore JW, El-Said HG. Three dimensional rotational angiography for assessment of coronary arteries during melody valve implantation: introducing a technique that may improve outcomes. Neth Heart J. 2017; 25: 82-90.
- 47Truong UT, Fagan TE, Deterding R, Ing RJ, Fonseca BM. Use of rotational angiography in assessing relationship of the airway to vasculature during cardiac catheterization. Catheter Cardiovasc Interv. 2015; 86: 1068-1077.
- 48Zahn E. The emerging use of 3-Dimensional rotational Angiography in congenital heart disease. Congenital Cardiol Today. 2011; 9: 1-13.
- 49Manica JL, Borges MS, Medeiros RF, Fischer Ldos S, Broetto G, Rossi Filho RI. A comparison of radiation dose between standard and 3D angiography in congenital heart disease. Arq Bras Cardiol. 2014; 103: 131-137.
- 50Thoenes C, Cesnjevar R, Dittrich S, Glockler M. Rotational angiography for 3D roadmapping of catheter interventions in congenital heart disease: comparison of a diagnostic and a low dose program. Open J Radiol. 2016; 6: 210-219.
10.4236/ojrad.2016.63028 Google Scholar
- 51Fagan T, Kay J, Carroll J, Neubauer A. 3-D guidance of complex pulmonary artery stent placement using reconstructed rotational angiography with live overlay. Catheter Cardiovasc Interv. 2012; 79: 414-421.
- 52Hu Y, Xie L, Nunes JC, Bellanger JJ, Bedossa M, Toumoulin C. ECG gated tomographic reconstruction for 3-D rotational coronary angiography. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010: 3614-3617.
- 53Schafer D, Borgert J, Rasche V, Grass M. Motion-compensated and gated cone beam filtered back-projection for 3-D rotational X-ray angiography. IEEE Trans Med Imaging. 2006; 25: 898-906.
- 54Unberath M, Aichert A, Achenbach S, Maier A. Consistency-based respiratory motion estimation in rotational angiography. Med Phys. 2017; 44: e113-e124.
- 55Müller K, Schwemmer C, Hornegger J, et al. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data. Med Phys. 2013; 40: 031107.
- 56Schultz CJ, Lauritsch G, Van Mieghem N, et al. Rotational angiography with motion compensation: first-in-man use for the 3D evaluation of transcatheter valve prostheses. EuroIntervention. 2015; 11: 442-449.
- 57Poterucha JT, Foley TA, Taggart NW. Percutaneous pulmonary valve implantation in a native outflow tract: 3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model. JACC Cardiovasc Interv. 2014; 7: e151-e152.
- 58Nguyen HH, Balzer DT, Murphy JJ, Nicolas R, Shahanavaz S. Radiation exposure by three-dimensional rotational angiography (3DRA) during trans-catheter melody pulmonary valve procedures (TMPV) in a pediatric cardiac catheterization laboratory. Pediatr Cardiol. 2016; 37: 1429-1435.
- 59Guccione P, Milanesi O, Hijazi ZM, Pongiglione G. Transcatheter pulmonary valve implantation in native pulmonary outflow tract using the Edwards SAPIEN transcatheter heart valve. Eur J Cardiothorac Surg. 2012; 41: 1192-1194.
- 60Bertels RA, Blom NA, Schalij MJ. Edwards SAPIEN transcatheter heart valve in native pulmonary valve position. Heart. 2010; 96: 661.
- 61Levi DS, Sinha S, Salem MM, Aboulhosn JA. Transcatheter native pulmonary valve and tricuspid valve replacement with the sapien XT: Initial experience and development of a new delivery platform. Catheter Cardiovasc Interv. 2016; 88: 434-443.
- 62Thanopoulos BV, Giannakoulas G, Arampatzis CA. Percutaneous pulmonary valve implantation in the native right ventricular outflow tract. Catheter Cardiovasc Interv. 2012; 79: 427-429.
- 63Chung R, Taylor AM. Imaging for preintervention planning: transcatheter pulmonary valve therapy. Circ Cardiovasc Imaging. 2014; 7: 182-189.
- 64Malone L, Fonseca B, Fagan T, et al. Preprocedural risk assessment prior to PPVI with CMR and cardiac CT. Pediatr Cardiol. 2017; 38: 746-753.
- 65Hill J, Bellotti C, Golden A. Three-dimensional rotational angiography during percutaneous device closure of Fontan fenestration. World J Pediatr Congenit Heart Surg. 2013; 4: 324-325.
- 66Lapierre C, Dubois J, Rypens F, Raboisson MJ, Dery J. Tetralogy of fallot: preoperative assessment with MR and CT imaging. Diagn Interv Imaging. 2016; 97: 531-541.
- 67Krings GJ, van der Stelt F, Molenschot MC, Breur JM. Oval stenting in left pulmonary artery stenosis: a novel double balloon technique to prevent airway compression in single ventricle. EuroIntervention. 2019. pii: EIJ-D-18-01079. doi: 10.4244/EIJ-D-18-01079
- 68Goreczny S, Dryzek P, Moszura T, et al. [Rotational angiography in monitoring of covered CP stent implantation in patient with critical aortic coarctation and patent ductus arteriosus] Kardiol Pol. 2012; 70: 505-507.
- 69Goreczny S, Morgan GJ, Dryzek P, Moll JA, Moszura T. Initial experience with live three-dimensional image overlay for ductal stenting in hypoplastic left heart syndrome. EuroIntervention. 2016; 12: 1527-1533.
- 70Rigatelli G, Zamboni A, Cardaioli P. Three-dimensional rotational digital angiography in a complicated case of patent ductus arteriosus transcatheter closure. Catheter Cardiovasc Interv. 2007; 70: 900-903.
- 71Rigatelli G, Zamboni A, Cardaioli P, et al. Three-dimensional rotational digital angiography in catheter-based congenital heart disease interventions. J Cardiovasc Med. 2008; 9: 432.
10.2459/JCM.0b013e3282785277 Google Scholar
- 72Hudson PA, Klein AJ, Kim MS, et al. A novel dual-axis rotational coronary angiography evaluation of coronary artery disease–case presentation and review. Clin Cardiol. 2010; 33: E16-E19.
- 73Klein AJ, Garcia JA, Hudson PA, et al. Safety and efficacy of dual-axis rotational coronary angiography vs. standard coronary angiography. Catheter Cardiovasc Interv. 2011; 77: 820-827.
- 74Maddux JT, Wink O, Messenger JC, et al. Randomized study of the safety and clinical utility of rotational angiography versus standard angiography in the diagnosis of coronary artery disease. Catheter Cardiovasc Interv. 2004; 62: 167-174.
- 75Garcia JA, Agostoni P, Green NE, et al. Rotational vs. standard coronary angiography: an image content analysis. Catheter Cardiovasc Interv. 2009; 73: 753-761.
- 76Akhtar M, Vakharia KT, Mishell J, et al. Randomized study of the safety and clinical utility of rotational vs. standard coronary angiography using a flat-panel detector. Catheter Cardiovasc Interv. 2005; 66: 43-49.
- 77Rios R, Loomba RS, Foerster SR, Pelech AN, Gudausky TM. Dual-axis rotational angiography is safe and feasible to detect coronary allograft vasculopathy in pediatric heart transplant patients: a single-center experience. Pediatr Cardiol. 2016; 37: 740-745.
- 78Gudausky TM, Pelech AN, Stendahl G, et al. Dual-axis rotational coronary angiography: a new technique for detecting graft coronary vasculopathy in pediatric heart transplant recipients. Pediatr Cardiol. 2013; 34: 560-565.
- 79Kyriakou Y, Deak P, Langner O, Kalender WA. Concepts for dose determination in flat-detector CT. Phys Med Biol. 2008; 53: 3551-3566.
- 80Sykes JR, Lindsay R, Iball G, Thwaites DI. Dosimetry of CBCT: methods, doses and clinical consequences. J Phys: Conf Ser. 2013; 444: 012017.
- 81Reinke G, Dittrich S, Banckwitz R, et al. Three-dimensional rotational angiography in congenital heart disease: estimation of radiation exposure. Open J Radiol. 2013; 3: 124-129.
10.4236/ojrad.2013.33020 Google Scholar
- 82Wielandts JY, Smans K, Ector J, De Buck S, Heidbuchel H, Bosmans H. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures. Phys Med Biol. 2010; 55: 563-579.
- 83Pantos I, Patatoukas G, Katritsis DG, Efstathopoulos E. Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev. 2009; 5: 1-11.
- 84Peters M, Krings G, Koster M, Molenschot M, Freund MW, Breur JM. Effective radiation dosage of three-dimensional rotational angiography in children. Europace. 2015; 17: 611-616.
- 85Haddad L, Waller BR, Johnson J, et al. Radiation protocol for three-dimensional rotational angiography to limit procedural radiation exposure in the pediatric cardiac catheterization lab. Congenit Heart Dis. 2016; 11: 637-646.
- 86Corredoira E, Vano E, Ubeda C, Gutierrez-Larraya F. Patient doses in paediatric interventional cardiology: impact of 3D rotational angiography. J Radiol Prot. 2015; 35: 179-195.
- 87Surendran S, Waller BR, Elijovich L, et al. Use of 3-D digital subtraction rotational angiography during cardiac catheterization of infants and adults with congenital heart diseases. Catheter Cardiovasc Interv. 2017; 90: 618-625.
- 88De Buck S, Alzand B, Wielandts J-Y, et al. Cardiac three-dimensional rotational angiography can be performed with low radiation dose while preserving image quality. Europace. 2013; 15: 1718-1724.
- 89Minderhoud S, van der Stelt F, Molenschot M, Koster MS, Krings GJ, Breur J. Dramatic dose reduction in three-dimensional rotational angiography after implementation of a simple dose reduction protocol. Pediatr Cardiol. 2018; 39: 1635-1641.
- 90Schultz CJ, van Mieghem NM, van der Boon RM, et al. Effect of body mass index on the image quality of rotational angiography without rapid pacing for planning of transcatheter aortic valve implantation: a comparison with multislice computed tomography. Eur Heart J Cardiovasc Imaging. 2014; 15: 133-141.
- 91Ghelani SJ, Glatz AC, David S, et al. Radiation dose benchmarks during cardiac catheterization for congenital heart disease in the United States. JACC Cardiovasc Interv. 2014; 7: 1060-1069.
- 92Kobayashi D, Meadows J, Forbes TJ, et al. Standardizing radiation dose reporting in the pediatric cardiac catheterization laboratory-a multicenter study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). Catheter Cardiovasc Interv. 2014; 84: 785-793.
- 93Beauséjour Ladouceur V, Lawler PR, Gurvitz M, et al. Exposure to low-dose ionizing radiation from cardiac procedures in patients with congenital heart disease: 15-year data from a population-based longitudinal cohort. Circulation. 2016; 133: 12-20.
- 94Glatz AC, Purrington KS, Klinger A, et al. Cumulative exposure to medical radiation for children requiring surgery for congenital heart disease. J Pediatr. 2014; 164: 789–794.e10.
- 95Soderberg M, Gunnarsson M. Automatic exposure control in computed tomography–an evaluation of systems from different manufacturers. Acta Radiol. 2010; 51: 625-634.
- 96He W, Huda W, Magill D, Tavrides E, Yao H. Patient doses and projection angle in cone beam CT. Med Phys. 2010; 37: 2359-2368.
- 97Justino H. The ALARA concept in pediatric cardiac catheterization: techniques and tactics for managing radiation dose. Pediatr Radiol. 2006; 36(Suppl 2): 146-153.
- 98Goubergrits L, Mevert R, Yevtushenko P, et al. The impact of MRI-based inflow for the hemodynamic evaluation of aortic coarctation. Ann Biomed Eng. 2013; 41: 2575-2587.
- 99Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015; 42: 870-886.
- 100Jeong D, Anagnostopoulos PV, Roldan-Alzate A, et al. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg. 2015; 149: 1339-1347.
- 101Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther. 2014; 4: 173-192.
- 102Taubmann O, Haase V, Lauritsch G, et al. Assessing cardiac function from total-variation-regularized 4D C-arm CT in the presence of angular undersampling. Phys Med Biol. 2017; 62: 2762-2777.
- 103Müller K, Maier AK, Zheng Y, et al. Interventional heart wall motion analysis with cardiac C-arm CT systems. Phys Med Biol. 2014; 59: 2265-2284.
- 104Wielandts JY, De Buck S, Ector J, Nuyens D, Maes F, Heidbuchel H. Left ventricular four-dimensional rotational angiography with low radiation dose through interphase registration. Europace. 2015; 17: 152-159.
- 105Pennati G, Corsini C, Hsia TY, Migliavacca F, Modeling of Congenital Hearts Alliance I. Computational fluid dynamics models and congenital heart diseases. Front Pediatr. 2013; 1: 4.
- 106DeCampli WM, Argueta-Morales IR, Divo E, Kassab AJ. Computational fluid dynamics in congenital heart disease. Cardiol Young. 2012; 22: 800-808.
- 107Siallagan D, Loke Y-H, Olivieri L, et al. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. J Thorac Cardiovasc Surg. 2017.
- 108Roldan-Alzate A, Garcia-Rodriguez S, Anagnostopoulos PV, Srinivasan S, Wieben O, Francois CJ. Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation. J Biomech. 2015; 48: 1325-1330.
- 109Ralovich K, Itu L, Vitanovski D, et al. Noninvasive hemodynamic assessment, treatment outcome prediction and follow-up of aortic coarctation from MR imaging. Med Phys. 2015; 42: 2143-2156.
- 110Goubergrits L, Riesenkampff E, Yevtushenko P, et al. MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging. 2015; 41: 909-916.