A Data-Driven Approach to Functional Map Construction and Bases Pursuit
Abstract
We propose a method to simultaneously compute scalar basis functions with an associated functional map for a given pair of triangle meshes. Unlike previous techniques that put emphasis on smoothness with respect to the Laplace–Beltrami operator and thus favor low-frequency eigenfunctions, we aim for a basis that allows for better feature matching. This change of perspective introduces many degrees of freedom into the problem allowing to better exploit non-smooth descriptors. To effectively search in this high-dimensional space of solutions, we incorporate into our minimization state-of-the-art regularizers. We solve the resulting highly non-linear and non-convex problem using an iterative scheme via the Alternating Direction Method of Multipliers. At each step, our optimization involves simple to solve linear or Sylvester-type equations. In practice, our method performs well in terms of convergence, and we additionally show that it is similar to a provably convergent problem. We show the advantages of our approach by extensively testing it on multiple datasets in a few applications including shape matching, consistent quadrangulation and scalar function transfer.
References
- Aflalo Y., Brezis H., Bruckstein A., Kimmel R., Sochen N.: Best bases for signal spaces. Comptes Rendus Mathematique 354, 12 (2016), 1155–1167. 1
- Azencot O., Corman E., Ben-Chen M., Ovsjanikov M.: Consistent functional cross field design for mesh quadrangulation. ACM Transactions on Graphics (TOG) 36, 4 (2017), 92. 7, 9, 10
- Aubry M., Schlickewei U., Cremers D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on (2011), IEEE, pp. 1626–1633. 1, 2, 3, 7
- Anguelov D., Srinivasan P., Pang H.-C., Koller D., Thrun S., Davis J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Advances in neural information processing systems (2005), pp. 33–40. 7
- Azencot O., Weissmann S., Ovsjanikov M., Wardetzky M., Ben-Chen M.: Functional fluids on surfaces. In Computer Graphics Forum (2014), vol. 33, Wiley Online Library, pp. 237–246. 2
- Bronstein A. M., Bronstein M. M., Kimmel R.: Numerical geometry of non-rigid shapes. Springer Science & Business Media, 2008. 7
- Berkooz G., Holmes P., Lumley J. L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annual review of fluid mechanics 25, 1 (1993), 539–575. 3
- Botsch M., Kobbelt L., Pauly M., Alliez P., Lévy B.: Polygon mesh processing. AK Peters/CRC Press, 2010. 3
10.1201/b10688 Google Scholar
- Besl P. J., McKay N. D.: Method for registration of 3d shapes. In Sensor Fusion IV: Control Paradigms and Data Structures (1992), vol. 1611, International Society for Optics and Photonics, pp. 586–607. 1
- Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122. 5, 7
- Bogo F., Romero J., Loper M., Black M. J.: Faust: Dataset and evaluation for 3d mesh registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 3794–3801. 7
- Chen Q., Koltun V.: Robust nonrigid registration by convex optimization. In Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 2039–2047. 7
- Ezuz D., Ben-Chen M.: Deblurring and denoising of maps between shapes. In Computer Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 165–174. 2, 7
- Eynard D., Rodola E., Glashoff K., Bronstein M. M.: Coupled functional maps. In 3D Vision (3DV), 2016 Fourth International Conference on (2016), IEEE, pp. 399–407. 7
- Giorgi D., Biasotti S., Paraboschi L.: Shape retrieval contest 2007: Watertight models track. SHREC competition 8, 7 (2007). 7
- Gao W., Goldfarb D., Curtis F. E.: Admm for multiaffine constrained optimization. arXiv preprint arXiv:1802.09592 (2018). 5, 13
- Gabay D., Mercier B.: A dual algorithm for the solution of non linear variational problems via finite element approximation. Institut de recherche d'informatique et d'automatique, 1975. 4
- Glowinski R., Marroco A.: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique 9, R2 (1975), 41–76. 4
10.1051/m2an/197509R200411 Google Scholar
- Golub G., Nash S., Van Loan C.: A hessenberg-schur method for the problem ax+ xb= c. IEEE Transactions on Automatic Control 24, 6 (1979), 909–913. 4
- Hou T., Qin H.: Continuous and discrete mexican hat wavelet transforms on manifolds. Graphical Models 74, 4 (2012), 221–232. 2
- Huang Q., Wang F., Guibas L.: Functional map networks for analyzing and exploring large shape collections. ACM Transactions on Graphics (TOG) 33, 4 (2014), 36. 1, 2
- Kovnatsky A., Bronstein M. M., Bronstein A. M., Glashoff K., Kimmel R.: Coupled quasi-harmonic bases. In Computer Graphics Forum (2013), vol. 32, Wiley Online Library, pp. 439–448. 1, 2, 3, 6, 7, 8, 9
- Kovnatsky A., Bronstein M. M., Bresson X., Vandergheynst P.: Functional correspondence by matrix completion. In Proceedings of the IEEE conference on computer vision and pattern recognition (2015), pp. 905–914. 1, 2
- Kovnatsky A., Glashoff K., Bronstein M. M.: Madmm: a generic algorithm for non-smooth optimization on manifolds. In European Conference on Computer Vision (2016), Springer, pp. 680–696. 1, 2
- Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. In ACM Transactions on Graphics (TOG) (2011), vol. 30, ACM, p. 79. 6, 7
- Kirgo M., Melzi S., Patanè G., Rodolà E., Ovsjanikov M.: Wavelet-based heat kernel derivatives: Towards informative localized shape analysis. In Computer Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 165–179. 2
- Kleiman Y., Ovsjanikov M.: Robust structure-based shape correspondence. In Computer Graphics Forum (2018), Wiley Online Library. 2, 7
- Litany O., Rodolà E., Bronstein A. M., Bronstein M. M.: Fully spectral partial shape matching. In Computer Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 247–258. 1, 2, 9
- Marin R., Rakotosaona M.-J., Melzi S., Ovsjanikov M.: Correspondence learning via linearly-invariant embedding. Advances in Neural Information Processing Systems 33 (2020). 2
- Nogneng D., Melzi S., Rodolà E., Castellani U., Bronstein M., Ovsjanikov M.: Improved functional mappings via product preservation. In Computer Graphics Forum (2018), vol. 37, Wiley Online Library, pp. 179–190. 2, 7, 10
- Nogneng D., Ovsjanikov M.: Informative descriptor preservation via commutativity for shape matching. In Computer Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 259–267. 1, 2, 5, 7, 8
- Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 30. 1, 2, 5, 7
- Ovsjanikov M., Corman E., Bronstein M., Rodolà E., Ben-Chen M., Guibas L., Chazal F., Bronstein A.: Computing and processing correspondences with functional maps. In SIGGRAPH ASIA 2016 Courses (2016), ACM, p. 9. 2
- Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15–36. 5
10.1080/10586458.1993.10504266 Google Scholar
- Reuter M., Biasotti S., Giorgi D., Patanè G., Spagnuolo M.: Discrete laplace–beltrami operators for shape analysis and segmentation. Computers & Graphics 33, 3 (2009), 381–390. 1
- Rodolà E., Moeller M., Cremers D.: Point-wise map recovery and refinement from functional correspondence. arXiv preprint arXiv:1506.05603 (2015). 2, 7
- Rustamov R. M., Ovsjanikov M., Azencot O., Ben-Chen M., Chazal F., Guibas L.: Map-based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics (TOG) 32, 4 (2013), 72. 2
- Ren J., Poulenard A., Wonka P., Ovsjanikov M.: Continuous and orientation-preserving correspondences via functional maps. arXiv preprint arXiv:1806.04455 (2018). 2, 5, 6, 7, 8
- Rustamov R. M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of the fifth Eurographics symposium on Geometry processing (2007), Eurographics Association, pp. 225–233. 1
- Schonsheck S. C., Bronstein M. M., Lai R.: Nonisometric surface registration via conformal laplace-beltrami basis pursuit. arXiv preprint arXiv:1809.07399 (2018). 2
- Solomon J., Rustamov R., Guibas L., Butscher A.: Earth mover's distances on discrete surfaces. ACM Transactions on Graphics (TOG) 33, 4 (2014), 67. 1
- Wang Y., Yin W., Zeng J.: Global convergence of ADMM in nonconvex nonsmooth optimization. Journal of Scientific Computing, 2018. 5
- Xiu D.: Numerical methods for stochastic computations: a spectral method approach. Princeton university press, 2010. 3
10.2307/j.ctv7h0skv Google Scholar