Filtered Quadrics for High-Speed Geometry Smoothing and Clustering
Hélène Legrand
LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
Search for more papers by this authorJean-Marc Thiery
LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
Search for more papers by this authorTamy Boubekeur
LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
Search for more papers by this authorHélène Legrand
LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
Search for more papers by this authorJean-Marc Thiery
LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
Search for more papers by this authorTamy Boubekeur
LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France
Search for more papers by this authorAbstract
Modern 3D capture pipelines produce dense surface meshes at high speed, which challenge geometric operators to process such massive data on-the-fly. In particular, aiming at instantaneous feature-preserving smoothing and clustering disqualifies global variational optimizers and one usually relies on high-performance parallel kernels based on simple measures performed on the positions and normal vectors associated with the surface vertices. Although these operators are effective on small supports, they fail at properly capturing larger scale surface structures. To cope with this problem, we propose to enrich the surface representation with filtered quadrics, a compact and discriminating range space to guide processing. Compared to normal-based approaches, this additional vertex attribute significantly improves feature preservation for fast bilateral filtering and mode-seeking clustering, while exhibiting a linear memory cost in the number of vertices and retaining the simplicity of convolutional filters. In particular, the overall performance of our approach stems from its natural compatibility with modern fine-grained parallel computing architectures such as graphics processor units (GPU). As a result, filtered quadrics offer a superior ability to handle a broad spectrum of frequencies and preserve large salient structures, delivering meshes on-the-fly for interactive and streaming applications, as well as quickly processing large data collections, instrumental in learning-based geometry analysis.
References
- [AGDL09] Adams A., Gelfand N., Dolson J., Levoy M.: Gaussian kd-trees for fast high-dimensional filtering. In Proceedings of ACM SIGGRAPH (New Orleans, LA, USA, 2009), pp. 21:1–21:12.
10.1145/1576246.1531327 Google Scholar
- [ASS*12] Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 11 (2012), 2274–2282.
- [BCM05] Buades A., Coll B., Morel J.-M.: A non-local algorithm for image denoising. In Proceedings of CVPR (San Diego, CA, USA, 2005), vol. 2, pp. 60–65.
10.1109/CVPR.2005.38 Google Scholar
- [CDR00] Clarenz U., Diewald U., Rumpf M.: Anisotropic geometric diffusion in surface processing. In Proceedings of Visualization (Salt Lake City, UT, USA, 2000), pp. 397–405.
10.1109/VISUAL.2000.885721 Google Scholar
- [CM02] Comaniciu D., Meer P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5 (2002), 603–619.
- [CPD07] Chen J., Paris S., Durand F.: Real-time edge-aware image processing with the bilateral grid. In Proceedings of ACM SIGGRAPH (San Diego, CA, USA, 2007).
10.1145/1275808.1276506 Google Scholar
- [CSAD04] Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape approximation. In ACM Transactions on Graphics 23 (2004), 905–914.
- [DMSB99] Desbrun M., Meyer M., Schröder P., Barr A. H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of SIGGRAPH (Los Angeles, CA, USA, 1999), pp. 317–324.
10.1145/311535.311576 Google Scholar
- [DMSB00] Desbrun M., Meyer M., Schröder P., Barr A. H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In Proceedings of Graphics Interface (Montreal, Québec, 2000), vol. 11.
- [DR05] DeCoro C., Rusinkiewicz S.: Pose-independent simplification of articulated meshes. In Proceedings of I3D (Washington, DC, USA, 2005), pp. 17–24.
10.1145/1053427.1053430 Google Scholar
- [FDCO03] Fleishman S., Drori I., Cohen-Or D.: Bilateral mesh denoising. In Proceedings of ACM SIGGRAPH (San Diego, CA, USA, 2003), pp. 950–953.
10.1145/1201775.882368 Google Scholar
- [FS10] Fulkerson B., Soatto S.: Really quick shift: Image segmentation on a GPU. In Proceedings of 11th European Conference on Trends and Topics in Computer Vision (Heraklion, Crete, Greece, 2010), pp. 350–358.
- [FYP10] Fan H., Yu Y., Peng Q.: Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2010), 312–324.
- [GAB12] Guillemot T., Almansa A., Boubekeur T.: Non local point set surfaces. In Proceedings of 3DIMPVT (Zurich, Switzerland, 2012), pp. 324–331.
10.1109/3DIMPVT.2012.71 Google Scholar
- [GH97] Garland M., Heckbert P. S.: Surface simplification using quadric error metrics. In Proceedings of SIGGRAPH (Los Angeles, CA, USA, 1997), pp. 209–216.
10.1145/258734.258849 Google Scholar
- [Gre10] Green S.: Particle simulation using CUDA. NVIDIA Whitepaper 6 (2010), 121–128.
- [GWH01] Garland M., Willmott A., Heckbert P. S.: Hierarchical face clustering on polygonal surfaces. In Proceedings of I3D (Research Triangle Park, NC, USA, 2001), pp. 49–58.
- [Hoe14] Hoetzlein R.: Fast fixed-radius nearest neighbors: Interactive million-particle fluids. In Proceedings of GPU Technology Conference (San Jose, CA, USA, 2014), p. 18.
- [Hop96] Hoppe H.: Progressive meshes. In Proceedings of SIGGRAPH (New Orleans, LA, USA, 1996), pp. 99–108.
10.1145/237170.237216 Google Scholar
- [HS13] He L., Schaefer S.: Mesh denoising via l0 minimization. ACM Transactions on Graphics 32, 4 (2013), 64:1–64:8.
- [HZR06] He X., Zemel R., Ray D.: Learning and incorporating top-down cues in image segmentation. In Proceedings of ECCV (Graz, Austria, 2006), 338–351.
10.1007/11744023_27 Google Scholar
- [JD03] Jones T. R., Durand F.: Non-iterative, feature-preserving mesh smoothing. ACM Transaction on Graphics 22 (2003), 943–949.
- [KCLU07] Kopf J., Cohen M. F., Lischinski D., Uyttendaele M.: Joint bilateral upsampling. ACM Transactions on Graphics 26, (2007), 96.
- [KG05] Kircher S., Garland M.: Progressive multiresolution meshes for deforming surfaces. In Proceedings of SCA (Los Angeles, CA, USA, 2005), pp. 191–200.
10.1145/1073368.1073395 Google Scholar
- [Kub18] Kubisch C.: Turing mesh shaders. SIGGRAPH 2018 Exhibitor Talk, 2018. https://devblogs.nvidia.com/introduction-turing-mesh-shaders.
- [LKK15] Lee J., Kim S., Kim S.-J.: Mesh segmentation based on curvatures using the GPU. Multimedia Tools and Applications 74, 10 (2015), 3401–3412.
- [LS09] Landreneau E., Schaefer S.: Simplification of articulated meshes. Computer Graphics Forum 28, (2009), 347–353.
- [MPW*09] Moore A. P., Prince S. J., Warrell J., Mohammed U., Jones G.: Scene shape priors for superpixel segmentation. In Proceedings of ICCV (Kyoto, Japan, 2009), pp. 771–778.
10.1109/ICCV.2009.5459246 Google Scholar
- [NF10] Nociar M., Ferko A.: Feature-preserving mesh denoising via attenuated bilateral normal filtering and quadrics. In Proceedings of SCCG (Budmerice, Slovakia, 2010), pp. 149–156.
10.1145/1925059.1925086 Google Scholar
- [OBS02] Ohtake Y., Belyaev A., Seidel H.-P.: Mesh smoothing by adaptive and anisotropic Gaussian filter applied to mesh normals. In Proceedings of VMV (Erlangen, Germany, 2002), pp. 203–2010.
- [RM03] Ren X., Malik J.: Learning a classification model for segmentation. In Proceedings of ICCV (Nice, France, 2003), pp. 10–17.
10.1109/ICCV.2003.1238308 Google Scholar
- [SCBW14] Solomon J., Crane K., Butscher A., Wojtan C.: A general framework for bilateral and mean shift filtering. arXiv preprint arXiv:1405.4734 (2014).
- [SKK07] Sheikh Y. A., Khan E. A., Kanade T.: Mode-seeking by medoidshifts. In Proceedings of ICCV (Rio de Janeiro, Brazil, 2007), pp. 1–8.
10.1109/ICCV.2007.4408978 Google Scholar
- [SPDF14] Simari P., Picciau G., De Floriani L.: Fast and scalable mesh superfacets. Computer Graphics Forum 33, (2014), 181–190.
- [SRML07] Sun X., Rosin P., Martin R., Langbein F.: Fast and effective feature-preserving mesh denoising. IEEE Transactions on Visualization and Computer Graphics 13, 5 (2007), 925–938.
- [Tau95] Taubin G.: A signal processing approach to fair surface design. In Proceedings of SIGGRAPH (Los Angeles, CA, USA, 1995), pp. 351–358.
10.1145/218380.218473 Google Scholar
- [TGB13] Thiery J.-M., Guy E., Boubekeur T.: Sphere-meshes: Shape approximation using spherical quadric error metrics. ACM Transactions on Graphics 32, 6 (2013), 178:1–178:12.
- [TGBE16] Thiery J.-M., Guy E., Boubekeur T., Eisemann E.: Animated mesh approximation with sphere-meshes. ACM Transactions on Graphics 35, 3 (2016), 30:1–30:13.
- [TM98] Tomasi C., Manduchi R.: Bilateral filtering for gray and color images. In Proceedings of ICCV (Bombay, India, 1998), p. 839.
- [VB11] Vialaneix G., Boubekeur T.: SBL mesh filter: A fast separable approximation of bilateral mesh filtering. In Proceedings of Vision, Modeling, and Visualization (Berlin, Germany, 2011), P. Eisert, J. Hornegger and K. Polthier (Eds.), pp. 97–103.
10.1145/2037826.2037858 Google Scholar
- [VNMC10] Vieira A. W., Neto A. A., Macharet D. G., Campos M. F.: Mesh denoising using quadric error metric. In Proceedings of SIBGRAPI (Gramado, Brazil, 2010), pp. 247–254.
10.1109/SIBGRAPI.2010.41 Google Scholar
- [VS08] Vedaldi A., Soatto S.: Quick shift and kernel methods for mode seeking. In Proceedings of ECCV (Marseille, France, 2008), pp. 705–718.
10.1007/978-3-540-88693-8_52 Google Scholar
- [WFL*15] Wang P.-S., Fu X.-M., Liu Y., Tong X., Liu S.-L., Guo B.: Rolling guidance normal filter for geometric processing. ACM Transactions on Graphics 34, 6 (2015), 173:1–173:9.
- [WLT16] Wang P.-S., Liu Y., Tong X.: Mesh denoising via cascaded normal regression. ACM Transactions on Graphics 35, 6 (2016), 232:1–232:12.
- [YBS06] Yoshizawa S., Belyaev A., Seidel H.-P.: Smoothing by example: Mesh denoising by averaging with similarity-based weights. In Proceedings of SMI (Matsushima, Japan, 2006), p. 9.
10.1109/SMI.2006.38 Google Scholar
- [YLL*05] Yamauchi H., Lee S., Lee Y., Ohtake Y., Belyaev A., Seidel H.-P.: Feature sensitive mesh segmentation with mean shift. In Proceedings of SMI (Cambridge, MA, USA, 2005), pp. 236–243.
10.1109/SMI.2005.21 Google Scholar
- [YOB02] Yagou H., Ohtake Y., Belyaev A.: Mesh smoothing via mean and median filtering applied to face normals. In Proceedings of GMP (Wako, Saitama, Japan, 2002), p. 124.
10.1109/GMAP.2002.1027503 Google Scholar
- [YOB03] Yagou H., Ohtake Y., Belyaev A.: Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. In Proceedings of CGI (Tokyo, Japan, 2003), pp. 28–33.
10.1109/CGI.2003.1214444 Google Scholar
- [YRP17] Yadav S. K., Reitebuch U., Polthier K.: Mesh denoising based on normal voting tensor and binary optimization. IEEE Transactions on Visualization and Computer Graphics 24, 8 (2017), 2366–2379.
- [ZDZ*15] Zhang W., Deng B., Zhang J., Bouaziz S., Liu L.: Guided mesh normal filtering. Computer Graphics Forum 34, (2015), 23–34.
- [ZFAT11] Zheng Y., Fu H., Au O. K.-C., Tai C.-L.: Bilateral normal filtering for mesh denoising. IEEE Transactions on Visualization and Computer Graphics 17, 10 (2011), 1521–1530.
- [ZSL*13] Zhang L., Song M., Liu Z., Liu X., Bu J., Chen C.: Probabilistic graphlet cut: Exploiting spatial structure cue for weakly supervised image segmentation. In Proceedings of CVPR (Portland, OR, USA, 2013), pp. 1908–1915.
10.1109/CVPR.2013.249 Google Scholar
- [ZSXJ14] Zhang Q., Shen X., Xu L., Jia J.: Rolling guidance filter. In Proceedings of ECCV (Zurich, Switzerland, 2014), pp. 815–830.
10.1007/978-3-319-10578-9_53 Google Scholar
- [ZZW10] Zhang S., Zhao J., Wang B.: A local feature based simplification method for animated mesh sequence. In Proceedings of ICCET (Chengdu, China, 2010), vol. 1, pp. V1–681.