Adaptable Anatomical Models for Realistic Bone Motion Reconstruction
Abstract
We present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well-articulated after the adaptation. We propose an optimization algorithm which learns the subject-specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically-based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.
Supporting Information
Filename | Description |
---|---|
cgf12575-sup-0001-S1.mov26.5 MB | Supporting Information |
cgf12575-sup-0002-S1.mov998.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Anguelov D., Srinivasan P., Koller D., Thrun S., Rodgers J., Davis J.: Scape: shape completion and animation of people. In ACM Trans. Graph. (2005). 3
- Ballan L., Taneja A., Gall J., Van Gool L., Pollefeys M.: Motion capture of hands in action using discriminative salient points. In ECCV. Springer, 2012. 3
- Corazza S., Gambaretto E., Mundermann L., Andriacchi T.P.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Transactions on Biomedical Engineering 57, 4 (2010), 806–812. 3
- Clutterbuck S., Jacobs J.: A physically based approach to virtual character deformation. In ACM SIGGRAPH 2010 talks (2010). 2
- Corazza S., Mündermann L., Chaudhari A., Demattio T., Cobelli C., Andriacchi T.: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach. Annals of biomedical engineering 34, 6 (2006), 1019–1029. 3
- Corazza S., Mündermann L., Gambaretto E., Ferrigno G., Andriacchi T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87, 1-2 (2010), 156–169. 3
- Ceseracciu E., Sawacha Z., Cobelli C.: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PloS one 9, 3 (2014), e87640. 3
- Chang W., Zwicker M.: Global registration of dynamic range scans for articulated model reconstruction. ACM Trans. Graph. 30, 3 (2011), 26. 3, 6
- Delp S.L., Anderson F.C., Arnold A.S., Loan P., Habib A., John C.T., Guendelman E., Thelen D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940–1950. 2, 3, 9, 11
- De Aguiar E., Stoll C., Theobalt C., Ahmed N., Seidel H.-P., Thrun S.: Performance capture from sparse multi-view video. In ACM Trans. Graph. (2008), vol. 27. 3
- Dicko A., Gilles B., Faure F., Palombi O.: From generic to specific musculoskeletal simulations using an ontology-based modeling pipeline. In Intelligent Computer Graphics 2012. Springer, 2012, pp. 227–242. 3
- Dicko A.-H., Liu T., Gilles B., Kavan L., Faure F., Palombi O., Cani M.-P.: Anatomy transfer. ACM Trans. Graph. 32, 6 (2013). 2, 3, 11
- Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 8 (1990). 3
- Fan Y., Litven J., Pai D.K.: Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4 (2014). 2, 8
- Garling E., Kaptein B., Mertens B., Barendregt W., Veeger H., Nelissen R., Valstar E.: Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics 40 (2007), S18–S24. 3
- Gilles B., Reveret L., Pai D.: Creating and animating subject-specific anatomical models. In Computer Graphics Forum (2010), vol. 29, pp. 2340–2351. 3
- Gall J., Stoll C., De Aguiar E., Theobalt C., Rosenhahn B., Seidel H.-P.: Motion capture using joint skeleton tracking and surface estimation. In CVPR (2009). 3
- Helten T., Baak A., Bharaj G., Muller M., Seidel H.-P., Theobalt C.: Personalization and evaluation of a real-time depth-based full body tracker. In 3DTV-Conference, 2013 (2013), IEEE, pp. 279–286. 3
- Holzbaur K.R., Murray W.M., Delp S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of biomedical engineering 33, 6 (2005), 829–840. 3, 8
- Hasler N., Stoll C., Sunkel M., Rosenhahn B., Seidel H.-P.: A statistical model of human pose and body shape. In Computer Graphics Forum (2009), vol. 28. 3
- Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78. 5, 8, 9
- Jacobson A., Sorkine O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (2011), 165:1–165:8. 8
10.1145/2070781.2024199 Google Scholar
- Kummer B., Lohscheidt K.: Mathematical model of the longitudinal growth of long bones. Anatomischer Anzeiger 158, 5 (1985), 377. 5
- Kavan L., Sorkine O.: Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (2012). 3
- Kraevoy V., Sheffer A., Shamir A., Cohen-Or D.: Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5 (2008), 111:1–111:9. 3
- Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 6, 7
- Lewis J.P., Cordner M., Fong N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. ACM SIGGRAPH (2000), pp. 165–172. 8, 12
- Le B.H., Deng Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4 (2014). 3
- Lu G., DeSouza G., Armer J., Shyu. B. A. C.-R.: A system for limb-volume measurement using 3d models from an infrared depth sensor. In IEEE Symposium Series on Computational Intelligence, Symposium on Computational Intelligence for Healthcare and e-Health (CICARE) (2013). 3
- Liu Y., Gall J., Stoll C., Dai Q., Seidel H., Theobalt C.: Markerless motion capture of multiple characters using multi-view image segmentation. TPAMI (2013). 3
- Li H., Luo L., Vlasic D., Peers P., Popović J., Pauly M., Rusinkiewicz S.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (2012), 2. 3
- Lu T.-W., O'Connor J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics 32, 2 (1999), 129–134. 3
- Lee S.-H., Terzopoulos D.: Spline joints for multi-body dynamics. In ACM Trans. Graph. (2008), vol. 27. 4
- Moeslund T., Hilton A., Kruger V., Sigal L.: Visual analysis of humans: looking at people. Springer, 2011. 3
10.1007/978-0-85729-997-0 Google Scholar
- McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM Trans. Graph. (2011), vol. 30, p. 37. 8
- Nester C., Jones R., Liu A., Howard D., Lundberg A., Arndt A., Lundgren P., Stacoff A., Wolf P.: Foot kinematics during walking measured using bone and surface mounted markers. Journal of biomechanics 40, 15 (2007), 3412–3423. 3
- Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. In Computer Graphics Forum (2008), vol. 27, pp. 399–408. 3
- Poppe R.: Vision-based human motion analysis: An overview. Computer vision and image understanding 108, 1 (2007). 3
- Straka M., Hauswiesner S., Ruether M., Bischof H.: Simultaneous shape and pose adaption of articulated models using linear optimization. In ECCV (2012). 3
- Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., Cook M., Moore R.: Realtime human pose recognition in parts from single depth images. Communications of the ACM 56, 1 (2013), 116–124. 3
- Todorov E.: Probabilistic inference of multi-joint movements, skeletal parameters and marker attachments from diverse sensor data. IEEE Trans. on Biomed. Eng. (2007). 3
- Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. In ACM Trans. Graph. (2008), vol. 27, p. 97. 3
- Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., Dima D.D., Cristofolini L., Witte H., Schmid O., Stokes I.: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine. Journal of Biomechanics 35, 4 (2002), 543–548. 4
- Wu G., van der Helm F.C., Veeger H.D., Makhsous M., Roy P.V., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B.: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics 38, 5 (2005), 981–992. 4
- Wei X., Zhang P., Chai J.: Accurate realtime full-body motion capture using a single depth camera. ACM Trans. Graph. 31, 6 (2012), 188. 3, 8
- Ye G., Liu Y., Hasler N., Ji X., Dai Q., Theobalt C.: Performance capture of interacting characters with handheld kinects. In ECCV. Springer, 2012, pp. 828–841. 3