Volume 196, Issue 5 pp. 1175-1183
Research Paper

Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry

Valentin Clichet

Valentin Clichet

Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Véronique Harrivel

Véronique Harrivel

Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Caroline Delette

Caroline Delette

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Eric Guiheneuf

Eric Guiheneuf

Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Murielle Gautier

Murielle Gautier

Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Pierre Morel

Pierre Morel

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Déborah Assouan

Déborah Assouan

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Lavinia Merlusca

Lavinia Merlusca

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Marie Beaumont

Marie Beaumont

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Search for more papers by this author
Delphine Lebon

Delphine Lebon

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France

Search for more papers by this author
Alexis Caulier

Alexis Caulier

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France

Search for more papers by this author
Jean-Pierre Marolleau

Jean-Pierre Marolleau

Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France

Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France

Search for more papers by this author
Thomas Matthes

Thomas Matthes

Service d’Hématologie, Hôpital Universitaire de Genève, Genève, Suisse

Search for more papers by this author
François Vergez

François Vergez

Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France

Search for more papers by this author
Loïc Garçon

Loïc Garçon

Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France

Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France

Search for more papers by this author
Thomas Boyer

Corresponding Author

Thomas Boyer

Service d’Hématologie Biologique, CHU Amiens-Picardie, Amiens, France

Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France

Correspondence: Thomas Boyer, Service d’Hématologie Biologique, Centre de Biologie Humaine, 1 rond point du Pr Christian Cabrol, CHU Amiens Picardie, 80054 Amiens Cedex 1, France.

E-mail: [email protected]

Search for more papers by this author
First published: 03 November 2021
Citations: 6

Summary

Monoclonal gammopathy of unknown significance (MGUS), smouldering multiple myeloma (SMM), and multiple myeloma (MM) are very common neoplasms. However, it is often difficult to distinguish between these entities. In the present study, we aimed to classify the most powerful markers that could improve diagnosis by multiparametric flow cytometry (MFC). The present study included 348 patients based on two independent cohorts. We first assessed how representative the data were in the discovery cohort (123 MM, 97 MGUS) and then analysed their respective plasma cell (PC) phenotype in order to obtain a set of correlations with a hypersphere visualisation. Cluster of differentiation (CD)27 and CD38 were differentially expressed in MGUS and MM (P < 0·001). We found by a gradient boosting machine method that the percentage of abnormal PCs and the ratio PC/CD117 positive precursors were the most influential parameters at diagnosis to distinguish MGUS and MM. Finally, we designed a decisional algorithm allowing a predictive classification ≥95% when PC dyscrasias were suspected, without any misclassification between MGUS and SMM. We validated this algorithm in an independent cohort of PC dyscrasias (n = 87 MM, n = 41 MGUS). This artificial intelligence model is freely available online as a diagnostic tool application website for all MFC centers worldwide (https://aihematology.shinyapps.io/PCdyscrasiasToolDg/).

Conflict of interest

The authors declare that they have no conflict of interest.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.