JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells
Clodagh Keohane
Department of Haematology, Guy's and St Thomas’ NHS Foundation Trust, London, UK
Department of Haematological Medicine, Kings College London, London, UK
First Authors: CK and SK contributed equally to this work.Search for more papers by this authorShahram Kordasti
Department of Haematological Medicine, Kings College London, London, UK
Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
First Authors: CK and SK contributed equally to this work.Search for more papers by this authorThomas Seidl
Department of Haematological Medicine, Kings College London, London, UK
Search for more papers by this authorPilar Perez Abellan
Department of Haematological Medicine, Kings College London, London, UK
Search for more papers by this authorNicholas S. B. Thomas
Department of Haematological Medicine, Kings College London, London, UK
Search for more papers by this authorClaire N. Harrison
Department of Haematology, Guy's and St Thomas’ NHS Foundation Trust, London, UK
Search for more papers by this authorCorresponding Author
Donal P. McLornan
Department of Haematology, Guy's and St Thomas’ NHS Foundation Trust, London, UK
Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
Senior Authors: DM and GJM contributed equally to this work.Correspondence: Donal P. McLornan, Department of Haematological Medicine, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
E-mail: [email protected]
Search for more papers by this authorGhulam J. Mufti
Department of Haematological Medicine, Kings College London, London, UK
Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
Senior Authors: DM and GJM contributed equally to this work.Search for more papers by this authorClodagh Keohane
Department of Haematology, Guy's and St Thomas’ NHS Foundation Trust, London, UK
Department of Haematological Medicine, Kings College London, London, UK
First Authors: CK and SK contributed equally to this work.Search for more papers by this authorShahram Kordasti
Department of Haematological Medicine, Kings College London, London, UK
Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
First Authors: CK and SK contributed equally to this work.Search for more papers by this authorThomas Seidl
Department of Haematological Medicine, Kings College London, London, UK
Search for more papers by this authorPilar Perez Abellan
Department of Haematological Medicine, Kings College London, London, UK
Search for more papers by this authorNicholas S. B. Thomas
Department of Haematological Medicine, Kings College London, London, UK
Search for more papers by this authorClaire N. Harrison
Department of Haematology, Guy's and St Thomas’ NHS Foundation Trust, London, UK
Search for more papers by this authorCorresponding Author
Donal P. McLornan
Department of Haematology, Guy's and St Thomas’ NHS Foundation Trust, London, UK
Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
Senior Authors: DM and GJM contributed equally to this work.Correspondence: Donal P. McLornan, Department of Haematological Medicine, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
E-mail: [email protected]
Search for more papers by this authorGhulam J. Mufti
Department of Haematological Medicine, Kings College London, London, UK
Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
Senior Authors: DM and GJM contributed equally to this work.Search for more papers by this authorSummary
CD4+ T cells maintain cancer surveillance and immune tolerance. Chronic inflammation has been proposed as a driver of clonal evolution in myeloproliferative neoplasms (MPN), suggesting that T cells play an important role in their pathogenesis. Treatment with JAK inhibitors (JAKi) results in improvements in MPN-associated constitutional symptoms as well as reductions in splenomegaly. However, effects of JAKi on T cells in MPN are not well established and the baseline immune signature remains unclear. We investigated the frequency and function of CD4+ T cell subsets in 50 MPN patients at baseline as well as during treatment with either ruxolitinib or fedratinib in a subset. We show that CD4+ CD127low CD25high FOXP3+ T regulatory cells are reduced in MPN patients compared to healthy controls and that this decrease is even more pronounced following JAKi therapy. Moreover, we show that after 6 months of treatment the number of T helper (Th)-17 cells increased. We also describe a functional ‘silencing’ of T helper cells both in vivo and in vitro and a blockade of pro-inflammatory cytokines from these cells. This profound effect of JAKi on T cell function may underlay augmented rates of atypical infections that have been reported with use of these drugs.
Supporting Information
Filename | Description |
---|---|
bjh13519-sup-0001-Suppdata.docxWord document, 169.8 KB | Figure S1. Effect of JAKi therapy on CD8+ T cells in vivo. Figure S2. Effects of Ruxolitinib on phospho-STAT3 expression in T cells. Figure S3. Long-term effect of Ruxolitinib on Treg proliferation. |
bjh13519-sup-0002-FigS1-S3.docxWord document, 180.4 KB | Table SI. Changes in Th17 cell % as compared between responders versus non responders at baseline and 6 months. Table SII. Effects of JAK inhibitors on cytokines/chemokines in vivo. Table SIII. Cell culture supernatant cytokine levels following 5 d stimulation with anti CD3/CD28 in the presence and absence of JAKi and DMSO. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ahmadzadeh, M. & Rosenberg, S.A. (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood, 107, 2409–2414.
- Alizadeh, D., Katsanis, E. & Larmonier, N. (2013) The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clinical and Developmental Immunology, 2013, 957878 2013:11. doi: 10.1155/2013/957878.957878.
- Antony, P.A., Piccirillo, C.A., Akpinarli, A., Finkelstein, S.E., Speiss, P.J., Surman, D.R., Palmer, D.C., Chan, C.C., Klebanoff, C.A., Overwijk, W.W., Rosenberg, S.A. & Restifo, N.P. (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. Journal of Immunology, 174, 2591–2601.
- Barosi, G., Mesa, R.A., Thiele, J., Cervantes, F., Campbell, P.J., Verstovsek, S., Dupriez, B., Levine, R.L., Passamonti, F., Gotlib, J., Reilly, J.T., Vannucchi, A.M., Hanson, C.A., Solberg, L.A., Orazi, A. & Tefferi, A.; International Working Group for Myelofibrosis Research and Treatment (IWG-MRT). (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia, 22, 437–438.
- Barosi, G., Mesa, R., Finazzi, G., Harrison, C., Kiladjian, J.J., Lengfelder, E., McMullin, M.F., Passamonti, F., Vannucchi, A.M., Besses, C., Gisslinger, H., Samuelsson, J., Verstovsek, S., Hoffman, R., Pardanani, A., Cervantes, F., Tefferi, A. & Barbui, T. (2013) Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood, 121, 4778–4781.
- Barron, L., Dooms, H., Hoyer, K.K., Kuswanto, W., Hofmann, J., O'Gorman, W.E. & Abbas, A.K. (2010) Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. Journal of Immunology, 185, 6426–6430.
- Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L. & Kuchroo, V.K. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235–238.
- Boniface, K., Blumenschein, W.M., Brovont-Porth, K., McGeachy, M.J., Basham, B., Desai, B., Pierce, R., McClanahan, T.K., Sadekova, S. & de Waal Malefyt, R. (2010) Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. Journal of Immunology, 185, 679–687.
- Caocci, G., Murgia, F., Podda, L., Solinas, A., Atzeni, S. & La Nasa, G. (2014) Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia, 28, 225–227.
- Cervantes, F., Vannucchi, A.M., Kiladjian, J.J., Al-Ali, H.K., Sirulnik, A., Stalbovskaya, V., McQuitty, M., Hunter, D.S., Levy, R.S., Passamonti, F., Barbui, T., Barosi, G., Harrison, C.N., Knoops, L. & Gisslinger, H. (2013) Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood, 122, 4047–4053.
- Cowan, J., Pandey, S., Filion, L.G., Angel, J.B., Kumar, A. & Cameron, D.W. (2012) Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clinical and Experimental Immunology, 167, 317–329.
- Epperson, D.E., Nakamura, R., Saunthararajah, Y., Melenhorst, J. & Barrett, A.J. (2001) Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leukaemia Research, 25, 1075–1083.
- Fleischman, A.G., Aichberger, K.J., Luty, S.B., Bumm, T.G., Petersen, C.L., Doratotaj, S., Vasudevan, K.B., LaTocha, D.H., Yang, F., Press, R.D., Loriaux, M.M., Pahl, H.L., Silver, R.T., Agarwal, A., O'Hare, T., Druker, B.J., Bagby, G.C. & Deininger, M.W. (2011) TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood, 118, 6392–6398.
- Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K., Chang, H.D., Bopp, T., Schmitt, E., Klein-Hessling, S., Serfling, E., Hamann, A. & Huehn, J. (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biology, 5, e38.
- Ghoreschi, K., Laurence, A. & O'Shea, J.J. (2009) Janus kinases in immune cell signaling. Immunological Reviews, 228, 273–287.
- Goldberg, R.A., Reichel, E. & Oshry, L.J. (2013) Bilateral toxoplasmosis retinitis associated with ruxolitinib. New England Journal of Medicine, 369, 681–683.
- Harrison, C., Kiladjian, J.-J., Al-Ali, H.K., Gisslinger, H., Waltzman, R., Stalbovskaya, V., McQuitty, M., Hunter, D.S., Levy, R., Knoops, L., Cervantes, F., Vannucchi, A.M., Barbui, T. & Barosi, G. (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. New England Journal of Medicine, 366, 787–798.
- Hasselbalch, H.C. (2012) Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood, 119, 3219–3225.
- Hasselbalch, H.C. (2013) Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?. Leukaemia Research, 37, 214–220.
- Heine, A., Held, S.A., Daecke, S.N., Wallner, S., Yajnanarayana, S.P., Kurts, C., Wolf, D. & Brossart, P. (2013) The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood, 122, 1192–1202.
- Komrokji, R.S., Seymour, J.F., Roberts, A.W., Wadleigh, M., To, L.B., Scherber, R., Turba, E., Dorr, A., Zhu, J., Wang, L., Granston, T., Campbell, M.S. & Mesa, R.A. (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood, 125, 2649–55.
- Kordasti, S.Y., Ingram, W., Hayden, J., Darling, D., Barber, L., Afzali, B., Lombardi, G., Wlodarski, M.W., Maciejewski, J.P., Farzaneh, F. & Mufti, G.J. (2007) CD4+ CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood, 110, 847–850.
- Kordasti, S.Y., Afzali, B., Lim, Z., Ingram, W., Hayden, J., Barber, L., Matthews, K., Chelliah, R., Guinn, B., Lombardi, G., Farzaneh, F. & Mufti, G.J. (2009) IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. British Journal of Haematology, 145, 64–72.
- Leonard, W.J., Shores, E.W. & Love, P.E. (1995) Role of the common cytokine receptor gamma chain in cytokine signaling and lymphoid development. Immunological Reviews, 148, 97–114.
- Long, K., Woodward, J., Procter, L., Ward, M., Meier, C., Williams, D. & Bernard, A. (2014) In vitro transfusion of red blood cells results in decreased cytokine production by human T cells. The Journal of Trauma and Acute Care Surgery, 77, 198–201.
- Malek, T.R. (2003) The main function of IL-2 is to promote the development of T regulatory cells. Journal of Leukocyte Biology, 74, 961–965.
- Massa, M., Rosti, V., Campanelli, R., Fois, G. & Barosi, G. (2014) Rapid and long-lasting decrease of T regulatory cells in patients with myelofibrosis treated with ruxolitinib. Leukemia, 28, 449–451.
- McMullin, M.F., Bareford, D., Campbell, P., Green, A.R., Harrison, C., Hunt, B., Oscier, D., Polkey, M.I., Reilly, J.T., Rosenthal, E., Ryan, K., Pearson, T.C. & Wilkins, B.; General Haematology Task Force of the British Committee for Standards in Haematology. (2005) Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis. British Journal of Haematology, 130, 174–195.
- Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M. & Shiina, M. (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science (Lond), 122, 143–159.
- Pardanani, A., Gotlib, J.R., Jamieson, C., Cortes, J.E., Talpaz, M., Stone, R.M., Silverman, M.H., Gilliland, D.G., Shorr, J. & Tefferi, A. (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. Journal of Clinical Oncology, 29, 789–796.
- Pardanani, A., Laborde, R.R., Lasho, T.L., Finke, C., Begna, K., Al-Kali, A., Hogan, W.J., Litzow, M.R., Leontovich, A., Kowalski, M. & Tefferi, A. (2013) Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia, 27, 1322–1327.
- Quintas-Cardama, A., Vaddi, K., Liu, P., Manshouri, T., Li, J., Scherle, P.A., Caulder, E., Wen, X., Li, Y., Waeltz, P., Rupar, M., Burn, T., Lo, Y., Kelley, J., Covington, M., Shepard, S., Rodgers, J.D., Haley, P., Kantarjian, H., Fridman, J.S. & Verstovsek, S. (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood, 115, 3109–3117.
- Riley, C.H., Jensen, M.K., Brimnes, M.K., Cortes, J.E., Talpaz, M., Stone, R.M., Silverman, M.H., Gilliland, D.G., Shorr, J. & Tefferi, A. (2011) Increase in circulating CD4(+)CD25(+)Foxp3(+) T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-alpha. Blood, 118, 2170–2173.
- Rudolph, J., Cornez, I., Brossart, P. & Wolf, D. (2013) The JAK1/JAK2 inhibitor ruxolitinib substantially affects NK cell biology. Blood, 122, 16.
- Sakaguchi, S., Miyara, M., Costantino, C.M. & Hafler, D.A. (2010) FOXP3+ regulatory T cells in the human immune system. Nature Review Immunology, 10, 490–500.
- Scottà, C., Esposito, M., Fazekasova, H., Fanelli, G., Edozie, F.C., Ali, N., Xiao, F., Peakman, M., Afzali, B., Sagoo, P., Lechler, R.I. & Lombardi, G. (2013) Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+ CD25+ FOXP3+ T regulatory cell subpopulations. Haematologica, 98, 1291–1299.
- Sharma, M.D., Hou, D.Y., Baban, B., Koni, P.A., He, Y., Chandler, P.R., Blazar, B.R., Mellor, A.L. & Munn, D.H. (2010) Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity, 33, 942–954.
- Silva, C.M., Lu, H., Weber, M.J. & Thorner, M.O. (1994) Differential tyrosine phosphorylation of JAK1, JAK2, and STAT1 by growth hormone and interferon-gamma in IM-9 cells. Journal of Biological Chemistry, 269, 27532–27539.
- Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J. & Vardiman, J.W. (2008) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. International Agency for Research on Cancer Press, Lyon, France.
- Tefferi, A., Vaidya, R., Caramazza, D., Finke, C., Lasho, T. & Pardanani, A. (2011) Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. Journal of Clinical Oncology, 29, 1356–1363.
- Tefferi, A., Cervantes, F., Mesa, R., Birgegard, G., Cervantes, F., Finazzi, G., Gisslinger, H., Griesshammer, M., Harrison, C., Hehlmann, R., Hermouet, S., Kiladjian, J., Kröger, N., Mesa, R., Mc Mullin, M.F., Pardanani, A., Passamonti, F., Samuelsson, J., Vannucchi, A.M., Reiter, A., Silver, R.T., Verstovsek, S., Tognoni, G. & Barbui, T. (2013) Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood, 122, 1395–1398.
- Vaidya, R., Gangat, N., Jimma, T., Finke, C.M., Lasho, T.L., Pardanani, A. & Tefferi, A. (2012) Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. American Journal of Hematology, 87, 1003–1005.
- Verstovsek, S., Kantarjian, H., Mesa, R.A., Pardanani, A.D., Cortes-Franco, J., Thomas, D.A., Estrov, Z., Fridman, J.S., Bradley, E.C., Erickson-Viitanen, S., Vaddi, K., Levy, R. & Tefferi, A. (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. New England Journal of Medicine, 363, 1117–1127.
- Wang, X., Zheng, J., Liu, J., Yao, J., He, Y., Li, X., Yu, J., Yang, J., Liu, Z. & Huang, S. (2005) Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. European Journal of Haematology, 75, 468–476.
- Wathes, R., Moule, S. & Milojkovic, D. (2013) Progressive multifocal leukoencephalopathy associated with ruxolitinib. New England Journal of Medicine, 369, 197–198.
- Wernig, G., Kharas, M.G., Okabe, R., Moore, S.A., Leeman, D.S., Cullen, D.E., Gozo, M., McDowell, E.P., Levine, R.L., Doukas, J., Mak, C.C., Noronha, G., Martin, M., Ko, Y.D., Lee, B.H., Soll, R.M., Tefferi, A., Hood, J.D. & Gilliland, D.G. (2008) Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell, 13, 311–320.
- Wysham, N.G., Sullivan, D.R. & Allada, G. (2013) An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest, 143, 1478–1479.
- Zeiser, R. & Negrin, R.S. (2008) Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy. Cell Cycle, 7, 458–462.
- Zhou, T., Georgeon, S., Moser, R., Moore, D.J., Caflisch, A. & Hantschel, O. (2014) Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia, 28, 404–407.