Neuromodulation in drug-resistant epilepsy: A review of current knowledge
Tao Xue
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorShujun Chen
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorYutong Bai
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorChunlei Han
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorCorresponding Author
Anchao Yang
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Correspondence
Jianguo Zhang and Anchao Yang, Department of Neurosurgery, Beijing Tiantan Hospital, Capital, Medical University, No. 119 South 4th Ring West Road, Fengtai District, 100070, Beijing, China.
Emails: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianguo Zhang
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Correspondence
Jianguo Zhang and Anchao Yang, Department of Neurosurgery, Beijing Tiantan Hospital, Capital, Medical University, No. 119 South 4th Ring West Road, Fengtai District, 100070, Beijing, China.
Emails: [email protected]; [email protected]
Search for more papers by this authorTao Xue
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorShujun Chen
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorYutong Bai
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorChunlei Han
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Search for more papers by this authorCorresponding Author
Anchao Yang
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Correspondence
Jianguo Zhang and Anchao Yang, Department of Neurosurgery, Beijing Tiantan Hospital, Capital, Medical University, No. 119 South 4th Ring West Road, Fengtai District, 100070, Beijing, China.
Emails: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianguo Zhang
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Correspondence
Jianguo Zhang and Anchao Yang, Department of Neurosurgery, Beijing Tiantan Hospital, Capital, Medical University, No. 119 South 4th Ring West Road, Fengtai District, 100070, Beijing, China.
Emails: [email protected]; [email protected]
Search for more papers by this authorTao Xue and Shujun Chen contributed equally to this work.
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
CONFLICT OF INTEREST
The authors declare that they have no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
Not applicable.
RESPONSE TO PEER REVIEW TRANSPARENCY OPTION (reviewer reports, author responses, and decision letter linked from Publons): Yes
REFERENCES
- 1Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020; 54(2): 185-191.
- 2Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000; 342(5): 314-319.
- 3Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015; 313(3): 285-293.
- 4Kahane P, Depaulis A. Deep brain stimulation in epilepsy: what is next? Curr Opin Neurol. 2010; 23(2): 177-182.
- 5Klinkenberg S, van den Borne CJH, Aalbers MW, et al. The effects of vagus nerve stimulation on tryptophan metabolites in children with intractable epilepsy. Epilepsy Behav. 2014; 37: 133-138.
- 6Ryvlin P, Gilliam FG, Nguyen DK, et al. The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia. 2014; 55(6): 893-900.
- 7Klinkenberg S, Aalbers MW, Vles JS, et al. Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. Dev Med Child Neurol. 2012; 54(9): 855-861.
- 8A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. The Vagus Nerve Stimulation Study Group. Neurology. 1995; 45(2): 224-230.
- 9Ben-Menachem E, Manon-Espaillat R, Ristanovic R, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia. 1994; 35(3): 616-626.
- 10Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010; 51(5): 899-908.
- 11Kowski AB, Voges J, Heinze HJ, Oltmanns F, Holtkamp M, Schmitt FC. Nucleus accumbens stimulation in partial epilepsy – a randomized controlled case series. Epilepsia. 2015; 56(6): e78-e82.
- 12Cukiert A, Cukiert CM, Burattini JA, Mariani PP, Bezerra DF. Seizure outcome after hippocampal deep brain stimulation in patients with refractory temporal lobe epilepsy: a prospective, controlled, randomized, double-blind study. Epilepsia. 2017; 58(10): 1728-1733.
- 13Herrman H, Egge A, Konglund AE, Ramm-Pettersen J, Dietrichs E, Taubøll E. Anterior thalamic deep brain stimulation in refractory epilepsy: a randomized, double-blinded study. Acta Neurol Scand. 2019; 139(3): 294-304.
- 14Dalic LJ, Warren AEL, Bulluss KJ, et al. DBS of thalamic centromedian nucleus for lennox-gastaut syndrome (ESTEL trial). Ann Neurol. 2022; 91(2): 253-267.
- 15Meador KJ, Kapur R, Loring DW, Kanner AM, Morrell MJ, RNS® System Pivotal Trial Investigators. Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav. 2015; 45: 242-247.
- 16Morrell MJ, RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011; 77(13): 1295-1304.
- 17Bauer S, Baier H, Baumgartner C, et al. Transcutaneous Vagus Nerve Stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 2016; 9(3): 356-363.
- 18Rong P, Liu A, Zhang J, et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin Med J. 2014; 127(2): 300-304.
- 19Aihua L, Lu S, Liping L, Xiuru W, Hua L, Yuping W. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 2014; 39: 105-110.
- 20Sun W, Mao W, Meng X, et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012; 53(10): 1782-1789.
- 21Cantello R, Rossi S, Varrasi C, et al. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia. 2007; 48(2): 366-374.
- 22Fregni F, Otachi PTM, do Valle A, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol. 2006; 60(4): 447-455.
- 23Theodore WH, Hunter K, Chen R, et al. Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology. 2002; 59(4): 560-562.
- 24Yang D, Wang Q, Xu C, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: a randomized, double-blind, sham-controlled, and three-arm parallel multicenter study. Brain Stimul. 2020; 13(1): 109-116.
- 25San-Juan D, Espinoza López DA, Vázquez Gregorio R, et al. Transcranial direct current stimulation in mesial temporal lobe epilepsy and hippocampal sclerosis. Brain Stimul. 2017; 10(1): 28-35.
- 26Assenza G, Campana C, Assenza F, et al. Cathodal transcranial direct current stimulation reduces seizure frequency in adults with drug-resistant temporal lobe epilepsy: a sham controlled study. Brain Stimul. 2017; 10(2): 333-335.
- 27Zoghi M, O'Brien TJ, Kwan P, Cook MJ, Galea M, Jaberzadeh S. Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: a pilot randomized controlled trial. Epilepsia Open. 2016; 1(3–4): 130-135.
- 28Auvichayapat N, Rotenberg A, Gersner R, et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 2013; 6(4): 696-700.
- 29Gil-Lopez F, Boget T, Manzanares I, et al. External trigeminal nerve stimulation for drug resistant epilepsy: a randomized controlled trial. Brain Stimul. 2020; 13(5): 1245-1253.
- 30DeGiorgio CM, Soss J, Cook IA, et al. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology. 2013; 80(9): 786-791.
- 31Hamilton P, Soryal I, Dhahri P, et al. Clinical outcomes of VNS therapy with AspireSR([R]) (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre. Seizure. 2018; 58: 120-126.
- 32Boon P, Vonck K, van Rijckevorsel K, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015; 32: 52-61.
- 33Hampel KG, Vatter H, Elger CE, Surges R. Cardiac-based vagus nerve stimulation reduced seizure duration in a patient with refractory epilepsy. Seizure. 2015; 26: 81-85.
- 34Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002; 1(8): 477-482.
- 35Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 2006; 1119(1): 124-132.
- 36Vonck K, van Laere K, Dedeurwaerdere S, Caemaert J, de Reuck J, Boon P. The mechanism of action of vagus nerve stimulation for refractory epilepsy: the current status. J Clin Neurophysiol. 2001; 18(5): 394-401.
- 37Di Lazzaro V, Oliviero A, Pilato F, et al. Effects of vagus nerve stimulation on cortical excitability in epileptic patients. Neurology. 2004; 62(12): 2310-2312.
- 38Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. 2011; 42(4): 288-296.
- 39Marrosu F, Serra A, Maleci A, Puligheddu M, Biggio G, Piga M. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 2003; 55(1–2): 59-70.
- 40Kwan H, Garzoni L, Liu HL, et al. Vagus nerve stimulation for treatment of inflammation: systematic review of animal models and clinical studies. Bioelectron Med. 2016; 3: 1-6.
- 41Fan JJ, Shan W, Wu JP, Wang Q. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neurosci Ther. 2019; 25(11): 1222-1228.
- 42Morris GL 3rd, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the guideline development subcommittee of the american academy of neurology. Epilepsy Curr. 2013; 13(6): 297-303.
- 43Suller Marti A, Mirsattari SM, MacDougall K, et al. Vagus nerve stimulation in patients with therapy-resistant generalized epilepsy. Epilepsy Behav. 2020; 111:107253.
- 44Szabo CA, Salinas FS, Papanastassiou AM, et al. High-frequency burst vagal nerve simulation therapy in a natural primate model of genetic generalized epilepsy. Epilepsy Res. 2017; 138: 46-52.
- 45Holmes MD, Silbergeld DL, Drouhard D, Wilensky AJ, Ojemann LM. Effect of vagus nerve stimulation on adults with pharmacoresistant generalized epilepsy syndromes. Seizure. 2004; 13(5): 340-345.
- 46Handforth A, DeGiorgio CM, Schachter SC, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998; 51(1): 48-55.
- 47Jain P, Arya R. Vagus nerve stimulation and seizure outcomes in pediatric refractory epilepsy: systematic review and meta-analysis. Neurology. 2021; 96: 1041-1051.
- 48Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery. 2016; 79(3): 345-353.
- 49Ghani S, Vilensky J, Turner B, Tubbs RS, Loukas M. Meta-analysis of vagus nerve stimulation treatment for epilepsy: correlation between device setting parameters and acute response. Childs Nerv Syst. 2015; 31(12): 2291-2304.
- 50Harden CL, Pulver MC, Ravdin LD, Nikolov B, Halper JP, Labar DR. A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav. 2000; 1(2): 93-99.
- 51Englot DJ, Hassnain KH, Rolston JD, Harward SC, Sinha SR, Haglund MM. Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy Behav. 2017; 66: 4-9.
- 52Sveinsson O, Andersson T, Mattsson P, Carlsson S, Tomson T. Clinical risk factors in SUDEP: a nationwide population-based case-control study. Neurology. 2020; 94(4): e419-e429.
- 53Ryvlin P, So EL, Gordon CM, et al. Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy. Epilepsia. 2018; 59(3): 562-572.
- 54Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 2000; 42(2–3): 203-210.
- 55Lo WB, Chevill B, Philip S, Agrawal S, Walsh AR. Seizure improvement following vagus nerve stimulator (VNS) battery change with cardiac-based seizure detection automatic stimulation (AutoStim): early experience in a regional paediatric unit. Childs Nerv Syst. 2021; 37(4): 1237-1241.
- 56Kawaji H, Yamamoto T, Fujimoto A, et al. Additional seizure reduction by replacement with Vagus Nerve Stimulation Model 106 (AspireSR). Neurosci Lett. 2020; 716:134636.
- 57Zhu J, Xu C, Zhang X, et al. Epilepsy duration as an independent predictor of response to vagus nerve stimulation. Epilepsy Res. 2020; 167:106432.
- 58Englot DJ, Chang EF, Auguste KI. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type. Neurosurg Clin N Am. 2011; 22(4): 443-448, v.
- 59Morris GL 3rd, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999; 53(8): 1731-1735.
- 60Oliveira Santos M, Bentes C, Teodoro T, et al. Complex sleep-disordered breathing after vagus nerve stimulation: broadening the spectrum of adverse events of special interest. Epileptic Disord. 2020; 22(6): 790-796.
- 61Salvade A, Ryvlin P, Rossetti AO. Impact of vagus nerve stimulation on sleep-related breathing disorders in adults with epilepsy. Epilepsy Behav. 2018; 79: 126-129.
- 62Marzec M, Edwards J, Sagher O, Fromes G, Malow BA. Effects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. Epilepsia. 2003; 44(7): 930-935.
- 63Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol. 2001; 18(5): 415-418.
- 64Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013; 70(2): 163-171.
- 65Van Buren JM, Wood JH, Oakley J, Hambrecht F. Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J Neurosurg. 1978; 48(3): 407-416.
- 66Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol. 1976; 33(8): 559-570.
- 67Ren L, Yu T, Wang D, et al. Subthalamic nucleus stimulation modulates motor epileptic activity in humans. Ann Neurol. 2020; 88(2): 283-296.
- 68Hupalo M, Wojcik R, Jaskolski DJ. Intracerebral electroencephalography in targeting anterior thalamic nucleus for deep brain stimulation in refractory epilepsy. Neurol Neurochir Pol. 2018; 52(3): 379-385.
- 69Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med. 2019; 11(4):e9575.
- 70Chiken S, Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist. 2016; 22(3): 313-322.
- 71Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013; 77(3): 406-424.
- 72Takebayashi S, Hashizume K, Tanaka T, Hodozuka A. The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats. Epilepsia. 2007; 48(2): 348-358.
- 73Middlebrooks EH, Lin C, Okromelidze L, et al. Functional activation patterns of deep brain stimulation of the anterior nucleus of the thalamus. World Neurosurg. 2020; 136: 357-363 e2.
- 74Yu T, Wang X, Li Y, et al. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain. 2018; 141(9): 2631-2643.
- 75Shi L, Yang AC, Li JJ, Meng DW, Jiang B, Zhang JG. Favorable modulation in neurotransmitters: effects of chronic anterior thalamic nuclei stimulation observed in epileptic monkeys. Exp Neurol. 2015; 265: 94-101.
- 76Jones EG, Leavitt RY. Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol. 1974; 154(4): 349-377.
- 77Salanova V, Sperling MR, Gross RE, et al. The SANTE study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021; 62(6): 1306-1317.
- 78Salanova V, Witt T, Worth R, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015; 84(10): 1017-1025.
- 79Vetkas A, Fomenko A, Germann J, et al. Deep brain stimulation targets in epilepsy: systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia. 2022; 63(3): 513-524.
- 80Schaper F, Plantinga BR, Colon AJ, et al. Deep brain stimulation in epilepsy: a role for modulation of the mammillothalamic tract in seizure control? Neurosurgery. 2020; 87(3): 602-610.
- 81Lehtimaki K, Möttönen T, Järventausta K, et al. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul. 2016; 9(2): 268-275.
- 82Scherer M, Milosevic L, Guggenberger R, et al. Desynchronization of temporal lobe theta-band activity during effective anterior thalamus deep brain stimulation in epilepsy. Neuroimage. 2020; 218:116967.
- 83Wang YC, Kremen V, Brinkmann BH, et al. Probing circuit of Papez with stimulation of anterior nucleus of the thalamus and hippocampal evoked potentials. Epilepsy Res. 2020; 159:106248.
- 84Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA, van Gompel JJ. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus. 2018; 45(2): E7.
- 85Piacentino M, Durisotti C, Garofalo PG, et al. Anterior thalamic nucleus deep brain Stimulation (DBS) for drug-resistant complex partial seizures (CPS) with or without generalization: long-term evaluation and predictive outcome. Acta Neurochir. 2015; 157(9): 1525-1532; discussion 1532.
- 86Hartikainen KM, Sun L, Polvivaara M, et al. Immediate effects of deep brain stimulation of anterior thalamic nuclei on executive functions and emotion-attention interaction in humans. J Clin Exp Neuropsychol. 2014; 36(5): 540-550.
- 87Voges BR, Schmitt FC, Hamel W, et al. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015; 56(8): e99-e103.
- 88Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia. 2018; 59(2): 273-290.
- 89Klinger NV, Mittal S. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clin Neurol Neurosurg. 2016; 140: 11-25.
- 90Fisher RS, Uematsu S, Krauss GL, et al. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia. 1992; 33(5): 841-851.
- 91Velasco F, Velasco M, Ogarrio C, Fanghanel G. Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia. 1987; 28(4): 421-430.
- 92Cukiert A, Burattini JA, Cukiert CM, et al. Centro-median stimulation yields additional seizure frequency and attention improvement in patients previously submitted to callosotomy. Seizure. 2009; 18(8): 588-592.
- 93Velasco AL, Velasco F, Jimenez F, et al. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia. 2006; 47(7): 1203-1212.
- 94Andrade DM, Zumsteg D, Hamani C, et al. Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology. 2006; 66(10): 1571-1573.
- 95Velasco F, Velasco M, Jiménez F, et al. Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus. Neurosurgery. 2000; 47(2): 295-304; discussion 304–5.
- 96Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014; 10(5): 261-270.
- 97Tellez-Zenteno JF, McLachlan RS, Parrent A, Kubu CS, Wiebe S. Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology. 2006; 66(10): 1490-1494.
- 98Velasco AL, Velasco F, Velasco M, Trejo D, Castro G, Carrillo-Ruiz JD. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia. 2007; 48(10): 1895-1903.
- 99McLachlan RS, Pigott S, Tellez-Zenteno JF, Wiebe S, Parrent A. Bilateral hippocampal stimulation for intractable temporal lobe epilepsy: impact on seizures and memory. Epilepsia. 2010; 51(2): 304-307.
- 100Bondallaz P, Boëx C, Rossetti AO, et al. Electrode location and clinical outcome in hippocampal electrical stimulation for mesial temporal lobe epilepsy. Seizure. 2013; 22(5): 390-395.
- 101Velasco M, Velasco F, Velasco AL, et al. Subacute electrical stimulation of the hippocampus blocks intractable temporal lobe seizures and paroxysmal EEG activities. Epilepsia. 2000; 41(2): 158-169.
- 102Boex C, Seeck M, Vulliémoz S, et al. Chronic deep brain stimulation in mesial temporal lobe epilepsy. Seizure. 2011; 20(6): 485-490.
- 103Wu C, Sharan AD. Neurostimulation for the treatment of epilepsy: a review of current surgical interventions. Neuromodulation. 2013; 16(1): 10-24; discussion 24.
- 104Cooper IS, Amin I, Gilman S. The effect of chronic cerebellar stimulation upon epilepsy in man. Trans Am Neurol Assoc. 1973; 98: 192-196.
- 105Wright GD, McLellan DL, Brice JG. A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatry. 1984; 47(8): 769-774.
- 106Velasco F, Carrillo-Ruiz JD, Brito F, et al. Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia. 2005; 46(7): 1071-1081.
- 107Davis R, Emmonds SE. Cerebellar stimulation for seizure control: 17-year study. Stereotact Funct Neurosurg. 1992; 58(1–4): 200-208.
- 108Bidzinski J, Bacia KO, Czarkwiani L. [Effect of cerebellar cortical electrostimulation on the frequency of epileptic seizures in severe forms of epilepsy]. Neurol Neurochir Pol. 1981; 15(5–6): 605-609.
- 109Gale K. Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol. 1992; 9(2): 264-277.
- 110Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain. 2021; 144(7): 2074-2091.
- 111Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009; 301(1): 63-73.
- 112Salanova V. Deep brain stimulation for epilepsy. Epilepsy Behav. 2018; 88S: 21-24.
- 113Benabid AL, Minotti L, Koudsié A, de Saint Martin A, Hirsch E. Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (Corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia: a 30-month follow-up: technical case report. Neurosurgery. 2002; 50(6): 1385-1391; discussion 1391–2.
- 114Lee KJ, Jang KS, Shon YM. Chronic deep brain stimulation of subthalamic and anterior thalamic nuclei for controlling refractory partial epilepsy. Acta Neurochir Suppl. 2006; 99: 87-91.
- 115Handforth A, DeSalles AA, Krahl SE. Deep brain stimulation of the subthalamic nucleus as adjunct treatment for refractory epilepsy. Epilepsia. 2006; 47(7): 1239-1241.
- 116Chabardes S, Kahane P, Minotti L, et al. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002; 4(Suppl 3): S83-S93.
- 117Chkhenkeli SA, Šramka M, Lortkipanidze GS, et al. Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin Neurol Neurosurg. 2004; 106(4): 318-329.
- 118Drlickova V, Sramka M, Ondrejcáková G, Nádvorník P. [Stimulation of the caudate nucleus in the treatment of epilepsy]. Cesk Neurol Neurochir. 1983; 46(5): 301-304.
- 119Schmitt FC, Voges J, Heinze HJ, Zaehle T, Holtkamp M, Kowski AB. Safety and feasibility of nucleus accumbens stimulation in five patients with epilepsy. J Neurol. 2014; 261(8): 1477-1484.
- 120Benedetti-Isaac JC, Torres-Zambrano M, Vargas-Toscano A, et al. Seizure frequency reduction after posteromedial hypothalamus deep brain stimulation in drug-resistant epilepsy associated with intractable aggressive behavior. Epilepsia. 2015; 56(7): 1152-1161.
- 121Franzini A, Messina G, Marras C, Villani F, Cordella R, Broggi G. Deep brain stimulation of two unconventional targets in refractory non-resectable epilepsy. Stereotact Funct Neurosurg. 2008; 86(6): 373-381.
- 122Koubeissi MZ, Kahriman E, Syed TU, Miller J, Durand DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol. 2013; 74(2): 223-231.
- 123Lesser RP, Kim SH, Beyderman L, et al. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology. 1999; 53(9): 2073-2081.
- 124Stypulkowski PH, Stanslaski SR, Jensen RM, Denison TJ, Giftakis JE. Brain stimulation for epilepsy – local and remote modulation of network excitability. Brain Stimul. 2014; 7(3): 350-358.
- 125Kokkinos V, Sisterson ND, Wozny TA, Richardson RM. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol. 2019; 76(7): 800-808.
- 126Kossoff EH, Ritzl EK, Politsky JM, et al. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia. 2004; 45(12): 1560-1567.
- 127Nair DR, Laxer KD, Weber PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020; 95(9): e1244-e1256.
- 128Bergey GK, Morrell MJ, Mizrahi EM, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015; 84(8): 810-817.
- 129Heck CN, King-Stephens D, Massey AD, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014; 55(3): 432-441.
- 130Devinsky O, Friedman D, Duckrow RB, et al. Sudden unexpected death in epilepsy in patients treated with brain-responsive neurostimulation. Epilepsia. 2018; 59(3): 555-561.
- 131Hirsch LJ, Mirro EA, Salanova V, et al. Mesial temporal resection following long-term ambulatory intracranial EEG monitoring with a direct brain-responsive neurostimulation system. Epilepsia. 2020; 61(3): 408-420.
- 132King-Stephens D, Mirro E, Weber PB, et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia. 2015; 56(6): 959-967.
- 133Quraishi IH, Mercier MR, Skarpaas TL, Hirsch LJ. Early detection rate changes from a brain-responsive neurostimulation system predict efficacy of newly added antiseizure drugs. Epilepsia. 2020; 61(1): 138-148.
- 134Badran BW, Brown JC, Dowdle LT, et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 2018; 11(4): 947-948.
- 135Dietrich S, Smith J, Scherzinger C, et al. [A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI]. Biomed Tech. 2008; 53(3): 104-111.
- 136Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012; 53(7): e115-e118.
- 137Liu D, Hu Y. The central projections of the great auricular nerve primary afferent fibers – an HRP transganglionic tracing method. Brain Res. 1988; 445(2): 205-210.
- 138Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018; 88S: 2-10.
- 139Walker BR, Easton A, Gale K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia. 1999; 40(8): 1051-1057.
- 140Quattrochi J, Datta S, Hobson JA. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep. Neuroscience. 1998; 83(4): 1123-1136.
- 141Wu K, Wang Z, Zhang Y, Yao J, Zhang Z. Transcutaneous vagus nerve stimulation for the treatment of drug-resistant epilepsy: a meta-analysis and systematic review. ANZ J Surg. 2020; 90(4): 467-471.
- 142Kimiskidis VK, Valentin A, Kalviainen R. Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy. Curr Opin Neurol. 2014; 27(2): 236-241.
- 143Walton D, Spencer DC, Nevitt SJ, Michael BD. Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database Syst Rev. 2021; 4:CD011025.
- 144Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000; 527(Pt 3): 633-639.
- 145Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017; 128(1): 56-92.
- 146Nitsche MA, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003; 553(Pt 1): 293-301.
- 147Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005; 568(Pt 2): 653-663.
- 148Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 2006; 47(2): 335-342.
- 149Sudbrack-Oliveira P, Barbosa MZ, Thome-Souza S, et al. Transcranial direct current stimulation (tDCS) in the management of epilepsy: a systematic review. Seizure. 2021; 86: 85-95.
- 150Magdaleno-Madrigal VM, Valdés-Cruz A, Martínez-Vargas D, et al. Effect of electrical stimulation of the nucleus of the solitary tract on the development of electrical amygdaloid kindling in the cat. Epilepsia. 2002; 43(9): 964-969.
- 151Fanselow EE, Reid AP, Nicolelis MA. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J Neurosci. 2000; 20(21): 8160-8168.
- 152Sasa M, Ohno Y, Nabatame H, Yoshimura N, Takaori S. Effects of L-threo-DOPS, an L-noradrenaline precursor, on locus coeruleus-originating neurons in spinal trigeminal nucleus. Brain Res. 1987; 420(1): 157-161.