The Paleoproterozoic and Neoproterozoic Carbon Cycle Promoted the Evolution of a Habitable Earth
Zhicheng LIU
Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Lifei ZHANG
Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, 100871 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorZhicheng LIU
Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Lifei ZHANG
Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, 100871 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorAbout the first author:
LIU Zhicheng, male, born in 1992 in Shandong Province; Ph.D. candidate at the School of Earth and Space Sciences, Peking University. He is currently engaged in research on the carbon cycle of the Paleoproterozoic and evolution of the habitable Earth. E-mail: [email protected].
About the corresponding author:
ZHANG Lifei, male, born in 1963 in Lishu County, Jilin Province; Ph.D. in geology; graduated from Peking University; professor of School of Earth and Space Sciences, Peking University. He is now interested in the study on metamorphic geology and deep carbon cycle in subduction zone. E-mail: [email protected].
Abstract
The carbon cycle is an important process that regulates Earth's evolution. We compare two typical periods, in the Paleoproterozoic and Neoproterozoic, in which many geological events occurred. It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time. In the Paleoproterozoic, intense weathering in a highly CO2 and CH4 rich atmosphere caused more nutritional elements to be carried into the ocean. Terrestrial input boosted high biological productivity, deposition of sediments and the formation of an altered oceanic crust, which may have promoted an increase in the oxygen content. Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible, which carried more carbon into the deep mantle. Carbon can be stored in the mantle as diamond and carbonated mantle rocks, being released by arc and mid-ocean ridge outgassing at widely different times. From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic, the carbon cycle has promoted the evolution of a habitable Earth.
References
- Alcott, L.J., Mills, B.J.W., and Poulton, S.W., 2019. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366(6471): 1333–1337.
- Andersen, M.B., Elliott, T., Freymuth, H., Sims, K.W.W., Niu, Y., and Kelley, K.A., 2015. The terrestrial uranium isotope cycle. Nature, 517(7534): 356–359.
- Andersson, P.S., Wasserburg, G.J., Chen, J.H., Papanastassiou, D.A., and Ingri, J., 1995. 238U-234U and 232Th-230Th in the Baltic Sea and in river water. Earth and Planetary Science Letters, 130(1–4): 217–234.
- Aulbach, S., and Stagno, V., 2016. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology, 44(9): 751–754.
- Baldwin, J.A., Bowring, S.A., Williams, M.L., and Williams, I.S., 2004. Eclogites of the Snowbird tectonic zone: Petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contributions to Mineralogy and Petrology, 147(5): 528–548.
- Bindeman, I.N., Zakharov, D.O., Palandri, J., Greber, N.D., Dauphas, N., Retallack, G.J., Hofmann, A., Lackey, J.S., and Bekker, A., 2018. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature, 557(7706): 545–548.
- Boniface, N., Schenk, V., and Appel, P., 2012. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambrian Research, 192–195(1): 16–33.
- Brown, M., and Johnson, T., 2018. Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103(2): 181–196.
- Brown, M., Kirkland, C.L., and Johnson, T.E., 2020. Evolution of geodynamics since the Archean: Significant change at the dawn of the Phanerozoic. Geology, 48(5): 488–492.
- Cabral, R.A., Jackson, M.G., Rose-Koga, E.F., Koga, K.T., Whitehouse, M.J., Antonelli, M.A., Farquhar, J., Day, J.M.D., and Hauri, E.H., 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 496(7446): 490–493.
- Campbell, I.H., and Allen, C.M., 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554–558.
- Catling, D.C., 2013. The Great Oxidation Event Transition. Treatise on Geochemistry: Second Edition. Elsevier, 6: 177–195.
- Catling, D.C., and Zahnle, K.J., 2020. The Archean atmosphere. Science Advances, 6: eaax1420.
- Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., 2013. The continental record and the generation of continental crust. Bulletin of the Geological Society of America, 125(1–2): 14–32.
- Charnay, B., Wolf, E.T., Marty, B., and Forget, F., 2020. Is the Faint Young Sun Problem for Earth Solved? Space Science Reviews, 216(5): 90.
- Crockford, P.W., Hayles, J.A., Bao, H., Planavsky, N.J., Bekker, A., Fralick, P.W., Halverson, G.P., Bui, T.H., Peng, Y., and Wing, B.A., 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature, 559(7715): 613–616.
- Cui, Y., Li, M.S., Van Soelen, Elsbeth E., Peterse, Francien., Kürschner, and Wolfram M., 2021. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2014701118.
- Dasgupta, R., 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry, 75: 183–229.
- Dasgupta, R., and Hirschmann, M.M., 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1–2): 1–13.
- Davaille, A., Smrekar, S.E., and Tomlinson, S., 2017. Experimental and observational evidence for plume-induced subduction on Venus. Nature Geoscience, 10(5): 349–355.
- Dhuime, B., Hawkesworth, C.J., Cawood, P.A., and Storey, C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335(6074): 1334–1336.
- Dhuime, B., Wuestefeld, A., and Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7): 552–555.
- Duke, G.I., Carlson, R.W., Frost, C.D., Hearn, B.C., and Eby, G.N., 2014. Continent-scale linearity of kimberlite-carbonatite magmatism, mid-continent North America. Earth and Planetary Science Letters, 403: 1–14.
- Duncan, M.S., and Dasgupta, R., 2017. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon. Nature Geoscience, 10(5): 387–392.
- Eguchi, J., Seales, J., and Dasgupta, R., 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geoscience, 13(1): 71–76.
- Farquhar, J., Bao, H., and Thiemens, M., 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289(5480): 756–758.
- Feulner, G., 2012. The faint young Sun problem. Reviews of Geophysics, 50: RG2006.
- François, C., Debaille, V., Paquette, J.L., Baudet, D., and Javaux, E.J., 2018. The earliest evidence for modern-style plate tectonics recorded by HP-LT metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo. Scientific Reports, 8: 15452.
- Ganade De Araujo, C.E., Rubatto, D., Hermann, J., Cordani, U.G., Caby, R., and Basei, M.A.S., 2014. Ediacaran 2,500-km -long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5: 1–8.
- Ganne, J., de Andrade, V., Weinberg, R.F., Vidal, O., Dubacq, B., Kagambega, N., Naba, S., Baratoux, L., Jessell, M., and Allibon, J., 2012. Modern-style plate subduction preserved in the Palaeoproterozoic West African craton. Nature Geoscience, 5(1): 60–65.
- Glassley, W.E., Korstgård, J.A., Ensen, K.S., and Platou, S.W., 2014. A new UHP metamorphic complex in the ∼1.8 Ga Nagssugtoqidian Orogen of west Greenland. American Mineralogist, 99(7): 1315–1334.
10.2138/am.2014.4726 Google Scholar
- Goldblatt, C., Robinson, T.D., Zahnle, K.J., and Crisp, D., 2013. Low simulated radiation limit for runaway greenhouse climates. Nature Geoscience, 6(8): 661–667.
- Hanyu, T., Tatsumi, Y., and Kimura, J.I., 2011. Constraints on the origin of the HIMU reservoir from He-Ne-Ar isotope systematics. Earth and Planetary Science Letters, 307(3–4): 377–386.
- Hazen, R.M., Bromberg, Y., Downs, R.T., Eleish, A., Falkowski, P.G., Fox, P., Giovannelli, D., Hummer, D.R., Hystad, G., Golden, J.J., Knoll, A.H., Li, C., Liu, C., Moore, E.K., Morrison, S.M., Muscente, A.D., Prabhu, A., Ralph, J., Rucker, M.Y., Runyon, S.E., Warden, L.A., and Zhong, H., 2019. Deep carbon through deep time: Data-driven insights. In: B. Orcutt, I. Daniel, and R. Dasgupta (eds.), Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 620–652.
- Herzberg, C., Condie, K., and Korenaga, J., 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292(1–2): 79–88.
- Holder, R.M., Viete, D.R., Brown, M., and Johnson, T.E., 2019. Metamorphism and the evolution of plate tectonics. Nature, 572(7769): 378–381.
- Hu, Q., Kim, D.Y., Yang, W., Yang, L., Meng, Y., Zhang, L., and Mao, H.K., 2016. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Nature, 534(7606): 241–244.
- Huang, S., Tschauner, O., Yang, S., Humayun, M., Liu, W., Gilbert Corder, S.N., Bechtel, H.A., and Tischler, J., 2020. HIMU geochemical signature originating from the transition zone. Earth and Planetary Science Letters, 542: 116323.
- Hulett, S.R.W., Simonetti, A., Rasbury, E.T., and Hemming, N.G., 2016. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geoscience, 9(12): 904–908.
- Husson, J.M., Peters, S.E., 2017. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth and Planetary Science Letters, 460: 68–75.
- Jackson, M.G., and Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth and Planetary Science Letters, 276(1–2): 175–186.
- Kawabata, H., Hanyu, T., Chang, Q., Kimura, J.I., Nichols, A.R.L., and Tatsumi, Y., 2011. The petrology and geochemistry of St. Helena alkali basalts: Evaluation of the oceanic crust-recycling model for HIMU OIB. Journal of Petrology, 52(4): 791–838.
- Keller, C.B., and Schoene, B., 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature, 485(7399): 490–493.
- Kimura, J.I., Gill, J.B., Skora, S., van Keken, P.E., and Kawabata, H., 2016. Origin of geochemical mantle components: Role of subduction filter. Geochemistry, Geophysics, Geosystems, 17(8): 3289–3325.
- Konhauser, K.O., Pecoits, E., Lalonde, S.V., Papineau, D., Nisbet, E.G., Barley, M.E., Arndt, N.T., Zahnle, K., and Kamber, B.S., 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458(7239): 750–753.
- Kopylova, M.G., Afanasiev, V.P., Bruce, L.F., Thurston, P.C., and Ryder, J., 2011. Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth and Planetary Science Letters, 312(1–2): 213–225.
- Kump, L.R., and Barley, M.E., 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448(7157): 1033–1036.
- Lapôtre, M.G.A., O'Rourke, J.G., Schaefer, L.K., Siebach, K.L., Spalding, C., Tikoo, S.M., and Wordsworth, R.D., 2020. Probing space to understand Earth. Nature Reviews Earth and Environment, 1(3): 170–181.
10.1038/s43017-020-0029-y Google Scholar
- Lee, C.T.A., Yeung, L.Y., McKenzie, N.R., Yokoyama, Y., Ozaki, K., and Lenardic, A., 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nature Geoscience, 9(6): 417–424.
- Lehmer, O.R., Catling, D.C., Buick, R., Brownlee, D.E., and Newport, S., 2020. Atmospheric CO2 levels from 2.7 billion years ago inferred from micrometeorite oxidation. Science Advances, 6: eaay4644.
- Li, X., Zhang, L., Wei, C., Bader, T., and Guo, J., 2023. Cold subduction recorded by the 1.9 Ga Salma eclogite in Belomorian Province (Russia). Earth and Planetary Science Letters, 602: 117930.
- Li, Z.X., Mitchell, R.N., Spencer, C.J., Ernst, R., Pisarevsky, S., Kirscher, U., and Murphy, J.B., 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1–5.
- Liu, C.T., and He, Y.S., 2021. Rise of major subaerial landmasses about 3.0 to 2.7 billion years ago. Geochemical Perspectives Letters, 18: 1–5.
10.7185/geochemlet.2115 Google Scholar
- Liu, H., Sun, W.D., Zartman, R., and Tang, M., 2019a. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago. Nature Communications, 10: 3408.
- Liu, H., Zartman, R.E., Ireland, T.R., and Sun, W.D., 2019b. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proceedings of the National Academy of Sciences of the United States of America, 116 (38): 18854–18859.
- Loose, D., and Schenk, V., 2018. 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: Significance for Palaeoproterozoic plate tectonics. Precambrian Research, 304: 1–11.
- Luo, G., Ono, S., Beukes, N.J., Wang, D.T., Xie, S., and Summons, R.E., 2016. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Science Advances, 2: e160013.
10.1126/sciadv.1600134 Google Scholar
- Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506 (7488): 307–315.
- Mason, E., Edmonds, M., and Turchyn, A.V., 2017. Remobilization of crustal carbon may dominate volcanic arc emissions. Science, 294(6348): 290–294.
10.1126/science.aan5049 Google Scholar
- Mazza, S.E., Gazel, E., Bizimis, M., Moucha, R., Béguelin, P., Johnson, E.A., McAleer, R.J., and Sobolev, A.V., 2019. Sampling the volatile-rich transition zone beneath Bermuda. Nature, 569(7756): 398–403.
- McKenzie, N.R., Horton, B.K., Loomis, S.E., Stockli, D.F., Planavsky, N.J., Lee, C.A., 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352(6284): 444–448.
- Moller, A., Appel, P., Mezger, K., and Schenk, V., 1995. Evidence for a 2 Ga subduction zone: Eclogites in the Usagaran belt of Tanzania. Geology, 23(12): 1067–1070.
- Müller, S., Dziggel, A., Sindern, S., Kokfelt, T.F., Gerdes, A., and Kolb, J., 2018. Age and temperature-time evolution of retrogressed eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-east Greenland: Constrained from U-Pb dating of zircon, monazite, titanite and rutile. Precambrian Research, 314: 468–486.
- Nebel, O., Arculus, R.J., van Westrenen, W., Woodhead, J.D., Jenner, F.E., Nebel-Jacobsen, Y.J., Wille, M., and Eggins, S.M., 2013. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook-Austral islands, suggest an Archean source component in the mantle transition zone. Geochimica et Cosmochimica Acta, 112: 87–101.
- Nielsen, S.G., 2010. Potassium and uranium in the upper mantle controlled by Archean oceanic crust recycling. Geology, 38 (8): 683–686.
- Palin, R.M., Santosh, M., Cao, W., Li, S.S., Hernández-Uribe, D., and Parsons, A., 2020. Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 207: 103172.
- Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., and Freedman, R., 2000. Greenhouse warming by CH4 in the atmosphere of early Earth. Journal of Geophysical Research: Planets, 105(E5): 11981–11990.
- Penman, D.E., Caves Rugenstein, J.K., Ibarra, D.E., and Winnick, M.J., 2020. Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle. Earth-Science Reviews, 209: 103298.
- Perchuk, A.L., Gerya, T.V., Zakharov, V.S., and Griffin, W.L., 2020. Building cratonic keels in Precambrian plate tectonics. Nature, 586(7829): 395–401.
- Plank, T., and Manning, C.E., 2019. Subducting carbon. Nature, 574(7778): 343–352.
- Poulton, S.W., Bekker, A., Cumming, V.M., Zerkle, A.L., Canfield, D.E., and Johnston, D.T., 2021. A 200-million-year delay in permanent atmospheric oxygenation. Nature, 592 (7853): 232–236.
- Richardson, S.H., and Shirey, S.B., 2008. Continental mantle signature of Bushveld magmas and coeval diamonds. Nature, 453(7197): 910–913.
- Richardson, S.H., Pöml, P.F., Shirey, S.B., and Harris, J.W., 2009. Age and origin of peridotitic diamonds from Venetia, Limpopo belt, Kaapvaal-Zimbabwe craton. Lithos, 112: 785–792.
10.1016/j.lithos.2009.05.017 Google Scholar
- Shields, G., and Veizer, J., 2002. Precambrian marine carbonate isotope database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6): 1–12.
10.1029/2001GC000266 Google Scholar
- Shirey, S.B., and Richardson, S.H., 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333(6041): 434–436.
- Smart, K.A., Chacko, T., Stachel, T., Muehlenbachs, K., Stern, R.A., and Heaman, L.M., 2011. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochimica et Cosmochimica Acta, 75 (20): 6027–6047.
- Smit, K.V., Shirey, S.B., Richardson, S.H., le Roex, A.P., and Gurney, J.J., 2010. Re-Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: Age constraints on Kimberley cratonic lithosphere. Geochimica et Cosmochimica Acta, 74(11): 3292–3306.
- Spencer, C.J., Roberts, N.M.W., and Santosh, M., 2017. Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews, 172: 87–106.
- Spencer, C.J., Murphy, J.B., Kirkland, C.L., Liu, Y., and Mitchell, R.N., 2018. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, 11(2): 97–101.
- Staudigel, H., Plank, T., White, B., and Schmincke, H.U., 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. In: Bebout, E.G., Scholl, D.W., Kirby, S.H., and Platt, J.P. (eds.), Subduction: Top to Bottom. Geophysical Monograph Series, 96: 19–38.
- Steinberger, B., and Torsvik, T.H., 2012. A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochemistry, Geophysics, Geosystems, 13: Q01W09.
- Stephan, S.V., and Brown, M., 2019. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature, 570(7759): 52–57.
- Stern, R.J., Leybourne, M.I., and Tsujimori, T., 2016. Kimberlites and the start of plate tectonics. Geology, 44(10): 799–802.
- Sun, C.G., and Dasgupta, R., 2020. Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth and Planetary Science Letters, 550: 116549.
- Tappe, S., Romer, R.L., Stracke, A., Steenfelt, A., Smart, K.A., Muehlenbachs, K., and Torsvik, T.H., 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters, 466: 152–167.
- Tappe, S., Smart, K., Torsvik, T., Massuyeau, M., and de Wit, M., 2018. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles. Earth and Planetary Science Letters, 484: 1–14.
- Wan, B., Yang, X., Tian, X., Yuan, H., Kirscher, U., and Mitchell, R.N., 2020. Seismological evidence for the earliest global subduction network at 2 Ga ago. Science Advances, 6: eabc5491.
- Weiss, Y., Class, C., Goldstein, S.L., and Hanyu, T., 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537(7622): 666–670.
- Weller, O.M., and St-Onge, M.R., 2017. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience, 10(4): 305–311.
- Xia, B., Zhang, L.F., Du, Z.X., and Xu, B., 2019. Petrology and age of Precambrian Aksu blueschist, NW China. Precambrian Research, 326: 295–311.
- Xu, C., Kynický, J., Song, W., Tao, R., Lü, Z., Li, Y., Yang, Y., Pohanka, M., Galiova, M.V., Zhang, L., and Fei, Y., 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nature Communications, 9: 2790.
- Yu, H.L., Zhang, L.F., Wei, C.J., Li, X.L., and Guo, J.H., 2017. Age and P-T conditions of the Gridino-type eclogite in the Belomorian Province, Russia. Journal of Metamorphic Geology, 35(8): 855–869.
- Zhang, Y., Wei, C., and Chu, H., 2020. Paleoproterozoic oceanic subduction in the North China Craton: Insights from the metamorphic P-T-t paths of the Chicheng mélange in the Hongqiyingzi Complex. Precambrian Research, 342: 105671.
- Zheng, Y.F., and Zhao, G., 2020. Two styles of plate tectonics in Earth's history. Science Bulletin, 65(4): 329–334.