Spatial and Temporal Stress Variations before and after the 2008 Wenchuan Mw 7.9 Earthquake and its Implications: A Study based on Borehole Stress Data
Corresponding Author
Wen MENG
Institute of Geophysics, China Earthquake Administration, Beijing, 100081 China
Key Laboratory of Earthquake Source Physics, China Earthquake Administration, Beijing, 100081 China
Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorWeiren LIN
Graduate School of Engineering, Kyoto University, Kyoto, Japan
Search for more papers by this authorQunce CHEN
Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081 China
Search for more papers by this authorYonghua LI
Institute of Geophysics, China Earthquake Administration, Beijing, 100081 China
Key Laboratory of Earthquake Source Physics, China Earthquake Administration, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Wen MENG
Institute of Geophysics, China Earthquake Administration, Beijing, 100081 China
Key Laboratory of Earthquake Source Physics, China Earthquake Administration, Beijing, 100081 China
Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorWeiren LIN
Graduate School of Engineering, Kyoto University, Kyoto, Japan
Search for more papers by this authorQunce CHEN
Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081 China
Search for more papers by this authorYonghua LI
Institute of Geophysics, China Earthquake Administration, Beijing, 100081 China
Key Laboratory of Earthquake Source Physics, China Earthquake Administration, Beijing, 100081 China
Search for more papers by this authorAbout the first and corresponding author:
MENG Wen, female, born in 1987 in Jining, Shandong Province; master; graduated from the Chinese Academy of Geological Sciences; associate researcher at the Institute of Geomechanics, Chinese Academy of Geological Sciences. She is currently interested in the comprehensive study of tectonic stress fields and seismic hazard evaluation E-mail: [email protected].
Abstract
In situ stress measurement data was analyzed to estimate the temporal and spatial stress variations at shallow depths in the Longmenshan fault zone (LMSF), prior to and following the 2008 Wenchuan earthquake (WCEQ). Analysis of the stress field related to fault strength and behavior is useful for understanding geodynamic processes and conducting hazard assessments. The shallow stress changes after the WCEQ show clear along-strike variations. Degrees of stress orientation rotations have a negative correlation with the horizontal principal stress ratios and the WCEQ apparently reduced the magnitude difference between horizontal principal stresses. Taking stress magnitudes and orientation distribution relative to the fault strike into account, we propose an intermediate-strength of LMSF, with a friction coefficient generally constrained between 0.35 and 0.6. In addition, high-pressure fluids in the fault zone reduce the effective normal stress and to a certain degree weaken the fault strength. The accumulated stress over a certain period following release of the WCEQ indicates the start of another earthquake cycle. The changing crustal stress field makes the LMSF stable or slipping optimally during geodynamic processes. The segmentation feature of the shallow crustal stress field in the LMSF may imply a different tectonic loading and seismic release processes along the fault. The southwestern section to the epicenter of the WCEQ favors the occurrence of future earthquakes, as high μm in a state of critical failure was present in this area, which indicates that the Wenchuan and Lushan earthquakes did not release the accumulated stress to a sufficient extent there.
References
- An, Q., Ding, L., Wang, H., and Zhao, S., 2004. Research of properties and activity of the Longmen Mountain fault zone. Journal of Geodesy and Geodynamics, 24(2): 115–119 (in Chinese with English abstract). doi:10.14075/j.jgg.2004.02.021.
10.14075/j.jgg.2004.02.021 Google Scholar
- Burchfiel, B.C., Royden, L.H., van der Hilst, R.D., Hager, B.H., Chen, Z., King, R.W., Li, C., Lü, J., Yao, H., and Kirby, E., 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 18(7): 4–11. doi:10.1130/gsatg18a.1.
10.1130/gsatg18a.1 Google Scholar
- Burchfiel, B.C., Zhiliang, C., Yupinc, L., and Royden, L.H., 1995. Tectonics of the Longmen Shan and adjacent regions, Central China. International Geology Review, 37(8): 661–735. doi:10.1080/00206819509465424.
10.1080/00206819509465424 Google Scholar
- Byerlee, J.D., 1978. Friction of rocks. Pure and Applied Geophysics, 116: 615–626.
- Chang, C., Lee, J.B., and Kang, T.S., 2010. Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophysics, 485: 164–177. doi:10.1016/j.tecto.2009.12.012.
- Chen, Y., Yang, Z., Zhang, Y., and Liu, C., 2013a. A brief talk on the 20 April 2013 Lushan Mw 6.7 earthquake. Acta Seismologica Sinica, 35(3): 285–295 (in Chinese with English abstract).
- Chen, Y., Yang, Z., Zhang, Y., and Liu, C., 2013b. From the Wenchuan earthquake to the Lushan earthquake, Scientia Sinica Terrae, 43(6): 1064–1072 (in Chinese with English abstract).
- Cui, J., Lin, W., Wang, L., Gao, L., Huang, Y., Wang, W., Sun, D., Li, Z., Zhou, C., Qian, H., Peng, H., Xia, K., and Li, K., 2014. Determination of three-dimensional in situ stresses by anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 619–620: 123–132. doi:10.1016/j.tecto.2013.09.013.
- Densmore, A.L., Ellis, M.A., Li, Y., Zhou, R.J., Hancock, G.S., and Richardson, N., 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26: TC4005. doi:10.1029/2006TC001987.
- Finkbeiner, T., Barton, C.A., and Zoback, M.D., 1997. Relationships among in-situ stress fractures and faults, and fluid flow: Monterey Formation, Santa Maria Basin, California. American Association of Petroleum Geologists Bulletin, 81(12): 1975–1999.
- Gao, Y., and Crampin, S., 2006. A stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarisations. Tectonophysics, 426: 253–262. doi:10.1016/j.tecto.2006.07.013.
- Gao, Y., Shi, Y., and Chen, A., 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake. Chinese Science Bulletin, 63(19): 1934–1948 (in Chinese with English abstract). doi:10.1360/n972018-00317.
10.1360/n972018-00317 Google Scholar
- Guo, Q., Wang, C., Ma, H., and Wang, C., 2009. In-situ hydrofracture stress measurement before and after the Wenchuan Ms 8.0 earthquake of China. Chinese Journal of Geophysics, 52(5): 1395–1401 (in Chinese with English abstract).
- Haimson, B.C., and Cornet, F.H., 2003. ISRM Suggested methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics and Mining Sciences, 40: 1011–1020. doi:10.1016/j.ijrmms.2003.08.002.
- Haimson, B.C., Doe, T.W., 1983. State of stress, permeability, and fractures in the Precambrian granite of Northern Illinois. Journal of Geophysical Research, 88(B9): 7355–7371.
- Hardebeck, J.L., 2012. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophysical Research Letters, 39: L21313. doi:10.1029/2012gl053438.
- Hardebeck, J.L., and Hauksson, E., 1999. Role of fluids in faulting inferred from stress field signatures. Science, 285 (5425): 236–239.
- Hardebeck, J.L., and Hauksson, E., 2001. Crustal stress field in southern California and its implications for fault mechanics. Journal of Geophysical Research: Solid Earth, 106(B10): 21859–21882. doi:10.1029/2001jb000292.
- Hardebeck, J.L., and Michael, A.J., 2004. Stress orientations at intermediate angles to the San Andreas Fault, California. Journal of Geophysical Research: Solid Earth, 109: B11303. doi:10.1029/2004jb003239.
10.1029/2004jb003239 Google Scholar
- Hardebeck, J.L., and Okada, T., 2018. Temporal stress changes caused by earthquakes: A review. Journal of Geophysical Research: Solid Earth, 123(2): 1350–1365. doi:10.1002/2017jb014617.
- Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.L., and Zoback, M., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484–498. doi:10.1016/j.tecto.2018.07.007.
- Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D., and Muller, B., 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482: 3–15. doi:10.1016/j.tecto.2009.07.023.
- Hickman, S., and Zoback, M., 2004. Stress orientations and magnitudes in the SAFOD pilot hole. Geophysical Research Letters, 31: L15S12. doi:10.1029/2004GL020043.
- Hillis, R.R., and Reynolds, S.D., 2000. The Australian stress map. Journal of the Geological Society, 157(5): 915–921.
- Huang, R.Q., Wang, Z., Pei, S.P., and Wang, Y.S., 2009. Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 473: 476–489. doi:10.1016/j.tecto.2009.04.001.
- Hubbard, J., and Shaw, J.H., 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake. Nature, 458(7235): 194–197. doi:10.1038/nature07837.
- Huffman, K.A., and Saffer, D.M., 2016. In situ stress magnitudes at the toe of the Nankai Trough Accretionary Prism, offshore Shikoku Island, Japan. Journal of Geophysical Research: Solid Earth, 121(2): 1202–1217. doi:10.1002/2015jb012415.
- Jaeger, J.C., and Cook, N.G.W., 1979. Fundamentals of rock mechanics. London: Chapman and Hall, 1–593.
- Kirby, E., Reiners, P.W., Krol, M.A., Whipple, K.X., Hodges, K.V., Farley, K.A., Tang, W., and Chen, Z., 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/Hethermochronology. Tectonics, 21(1): 1001. doi:10.1029/2000tc001246.
- Lev, E., Long, M.D., and van der Hilst, R.D., 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251: 293–304. doi:10.1016/j.epsl.2006.09.018.
- Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.R., Kuo, L.W., Sun, Z., Chevalier, M.L., and Liu, D., 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584: 23–42. doi:10.1016/j.tecto.2012.08.021.
- Li, X., Hergert, T., Henk, A., Wang, D., and Zeng, Z., 2019. Subsurface structure and spatial segmentation of the Longmen Shan fault zone at the eastern margin of Tibetan Plateau: Evidence from focal mechanism solutions and stress field inversion. Tectonophysics, 757: 10–23. doi:10.1016/j.tecto.2019.03.006.
- Li, Y., Jia, D., Wang, M., Shaw, J.H., He, J., Lin, A., Xiong, L., and Rao, G., 2014. Structural geometry of the source region for the 2013 Mw 6.6 Lushan earthquake: Implication for earthquake hazard assessment along the Longmen Shan. Earth and Planetary Science Letters, 390: 275–286. doi:10.1016/j.epsl.2014.01.018.
- Liao, C.T., Zhang, C.S., Wu, M.L., Ma, Y.S., and Ou, M.Y., 2003. Stress change near the Kunlun fault before and after the Ms8.1 Kunlun earthquake. Geophysical Research Letters, 30 (20): 2027–2030. doi:10.1029/2003gl018106.
- Lin, W., Byrne, T.B., Kinoshita, M., McNeill, L.C., Chang, C., Lewis, J.C., Yamamoto, Y., Saffer, D.M., Moore, J.C., Wu, H.Y., Tsuji, T., Yamada, Y., Conin, M., Saito, S., Ito, T., Tobin, H.J., Kimura, G., Kanagawa, K., Ashi, J., Underwood, M.B., and Kanamatsu, T., 2016. Distribution of stress state in the Nankai subduction zone, southwest Japan and a comparison with Japan Trench. Tectonophysics, 692: 120–130. doi:10.1016/j.tecto.2015.05.008.
- Lin, W., Conin, M., Moore, J.C., Chester, F.M., Nakamura, Y., Mori, J. J., Anderson, L., Brodsky, E.E., and Eguchi, N., 2013. Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake. Science, 339(6120): 687–690. doi:10.1126/science.1229379.
- Lin, W., Yeh, E.C., Ito, H., Hung, J.H., Hirono, T., Soh, W., Ma, K.F., Kinoshita, M., Wang, C.Y., and Song, S.R., 2007. Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake. Geophysical Research Letters, 34: L16307. doi:10.1029/2007gl030515.
- Lin, X., Dreger, D., Ge, H., Xu, P., Wu, M., Chiang, A., Zhao, G., and Yuan, H., 2018. Spatial and temporal variations in the moment tensor solutions of the 2008 Wenchuan earthquake aftershocks and their tectonic implications. Tectonics, 37: 989–1005. doi.org/10.1002/2017TC004764.
- Liu, M., Luo, G., and Wang, H., 2014. The 2013 Lushan Earthquake in China Tests Hazard Assessments. Seismological Research Letters, 85(1): 40–43. doi:10.1785/0220130117.
- Liu, Y.W., Chen, T., Xie, F.R., Du, F., Yang, D.X., Zhang, L., and Xu, L., 2014. Analysis of fluid induced aftershocks following the 2008 Wenchuan Ms8.0 earthquake. Tectonophysics, 619–620: 149–158. doi:10.1016/j.tecto.2013.09.010.
- Liu, Z.J., Zhang, Z., Wen, L., Tapponnier, P., Sun, J., Xing, X., Hu, G., Xu, Q., Zeng, L., Ding, L., Ji, C., Hudnut, K.W., and van der Woerd, J., 2009. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth and Planetary Science Letters, 286: 355–370. doi:10.1016/j.epsl.2009.07.017.
- Luo, G., and Liu, M., 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics, 491: 127–140. doi:10.1016/j.tecto.2009.12.019.
- Matsumoto, S., Yamashita, Y., Nakamoto, M., Miyazaki, M., Sakai, S., Iio, Y., Shimizu, H., Goto, K., Okada, T., Ohzono, M., Terakawa, T., Kosuga, M., Yoshimi, M., and Asano, Y., 2018. Prestate of stress and fault behavior during the 2016 Kumamoto earthquake (M 7.3). Geophysical Research Letters, 45: 637–645. doi:10.1002/2017gl075725.
- Meng, W., Chen, Q., Wu, M., Feng, C., and Qin, X., 2015a. Tectonic stress state changes before and after the Wenchuan Ms 8.0 earthquake in the eastern margin of the Tibetan Plateau. Acta Geologica Sinica (English Edition), 89(1): 77–89.
- Meng, W., Chen, Q., Zhao, Z., Wu, M., Qin, X., and Zhang, C., 2015b. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau. Tectonophysics, 656: 1–19. doi:10.1016/j.tecto.2015.04.010.
- Molnar, P., and Tapponnier, P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201): 419–426.
- Moos, D., and Zoback, M.D., 1990. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses, Application to Continental, Deep Sea Drilling Project, and Ocean Drilling Program Boreholes. Journal of Geophysical Research, 95(B6): 9305–9325.
- Moos, D., Peska, P., Finkbeiner, T., and Zoback, M., 2003. Comprehensive wellbore stability analysis utilizing Quantitative Risk Assessment. Journal of Petroleum Science and Engineering, 38: 97–109. doi:10.1016/s0920-4105(03)00024-x.
- Müller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., and Ljunggren, C., 1992. Regional patterns of tectonic stress in Europe. Journal of Geophysical Research, 97: 11783–11803.
- Nie, X., Zou, C., Pan, L., Huang, Z., and Liu, D., 2013. Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–1370 m). Tectonophysics, 593: 161–171. doi:10.1016/j.tecto.2013.03.005.
- Niu, F., Silver, P.G., Daley, T.M., Cheng, X., and Majer, E.L., 2008. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, 454(7201): 204–208. doi:10.1038/nature07111.
- Parsons, T., Ji, C., and Kirby, E., 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203): 509–510. doi:10.1038/nature07177.
- Pei, S., Niu, F., Ben-Zion, Y., Sun, Q., Liu, Y., Xue, X., Su, J., and Shao, Z., 2019. Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience, 12(5): 387–392. doi:10.1038/s41561-019-0347-1.
- Qin, X., Chen, Q., Tan, C., An, Q., Wu, M., and Feng, C., 2013. Analysis of current geostress state and seismic risk in the southwest segment of the Longmenshan fracture belt. Chinese Journal of Rock Mechanics and Engineering, 32(Supp.1): 2870–2876 (in Chinese with English abstract).
- Qiu, J., Wu, M., Fan, T., Zhang, C., Li, R., and Chen, L., 2017. Comparative analysis of in-situ stress state in the southwestern segment of the Longmenshan fault zone before and after Lushan earthquake. Acta Geologica Sinica, 91(5): 969–978 (in Chinese with English abstract).
- Royden, L.H., Burchfiel, B.C., and van der Hilst, R.D., 2008. The geological evolution of the Tibetan Plateau. Science, 321 (5892): 1054–1058. doi:10.1126/science.1155371.
- Sakaguchi, K., Yokoyama, T., Lin, W., and Watanabe, N., 2017. Stress buildup and drop in inland shallow crust caused by the 2011 Tohoku-oki earthquake events. Scientific Reports, 7: 10242. doi:10.1038/s41598-017-10897-8.
- Schaff, D.P., and Beroza, G.C., 2004. Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research: Solid Earth, 109: B10302. doi:10.1029/2004jb003011.
10.1029/2004jb003011 Google Scholar
- Scholz, C.H., 2000. Evidence for a strong San Andreas fault. Geology, 28(2): 163–166.
- Shen, Z.K., Sun, J.B., Zhang, P.Z., Wan, Y.G., Wang, M., Burgmann, R., Zeng, Y., Gan, W., Liao, H., and Wang, Q., 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2 (10): 718–724. doi:10.1038/Ngeo636.
- Tanaka, Y., Fujimori, K., and Otsuka, S., 1998. In-situ stress measurement and prediction of great earthquake. Earthquake, 50(2): 201–208 (in Japanese).
- Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671–1677. doi:10.1126/science.105978.
- Tingay, M., Morley, C., King, R., Hillis, R., Coblentz, D., and Hall, R., 2009. Present-day stress field of Southeast Asia. Tectonophysics, 482: 92–104.
- Toda, S., Lin, J., Meghraoui, M., and Stein, R.S., 2008. 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35: L17305. doi:10.1029/2008gl034903.
- Townend, J., and Zoback, M.D., 2000. How faulting keeps the crust strong. Geology, 28: 399–402. doi:10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
- Townend, J., and Zoback, M.D., 2004. Regional tectonic stress near the San Andreas fault in central and southern California. Geophysical Research Letters, 31: L15S11. doi:10.1029/2003gl018918.
- Verberne, B.A., He, C.R., and Spiers, C.J., 2010. Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan Fault Zone, Sichuan, China. Bulletin of the Seismological Society of America, 100(5b): 2767–2790. doi:10.1785/0120090287.
- Wang, C., Song, C., Guo, Q., Mao, J., and Zhang, Y., 2015. New insights into stress changes before and after the Wenchuan Earthquake using hydraulic fracturing measurements. Engineering Geology, 194: 98–113. doi:10.1016/j.enggeo.2015.05.016.
- Wang, H., Liu, M., Shen, X., and Liu, J., 2010. Balance of seismic moment in the Songpan–Ganze region, eastern Tibet: Implications for the 2008 Great Wenchuan earthquake. Tectonophysics, 491: 154–164. doi:10.1016/j.tecto.2009.09.022.
- Wang, Q., Qiao, X., Lan, Q.Q., Freymueller, J., Yang, S.M., Xu, C.J., Yang, Y., You, X., Tan, K., and Chen, G., 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nature Geoscience, 4: 634–640. doi:10.1038/ngeo1210.
- Wang, W., Zhao, L., Li, J., and Yao, Z., 2008. Rupture process of the Ms 8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics, 51(5): 1403–1410 (in Chinese with English abstract).
- Wu, H., Ma, K., Zoback, M., Boness, N., Ito, H., Hung, J.H., et al., 2007. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophysical Research Letters, 34: L01303. doi:10.1029/2006gl028050.
- Wu, M., Zhang, Y., Liao, C., Chen, Q., Ma, Y., Feng, C., Zhang, C., Yan, J., and Wu, J., 2013. Research on the stress state along the Longmenshan fault belt after the Wenchuan Ms 8.0 earthquake. Progress in Geophysics, 28(3): 1122–1130 (in Chinese with English abstract).
- Wu, Z., Chen, Q., Barosh, P.J., Peng, H., and Hu, D., 2013. Stress rise precursor to earthquakes in the Tibetan Plateau. Natural Science, 05(08A1): 46–55. doi:10.4236/ns.2013.58A1006.
10.4236/ns.2013.58A1006 Google Scholar
- Xu, X.W., Wen, X.Z., Han, Z.J., Chen, G.H., Li, C.Y., Zheng, W.J., Zhang, S.M., Ren, Z.K., Xu, C., Tan, X.B., Wei, Z.Y., Wang, M.M., Ren, J.J., He, Z.T., and Liang, M.J., 2013. Lushan Ms 7.0 earthquake: A blind reserve-fault earthquake. Chinese Science Bulletin, 58: 3437–3443. doi:10.1007/s11434-013-5999-4.
- Xu, X.W., Wen, X.Z., Yu, G.H., Chen, G.H., Klinger, Y., Hubbard, J., and Shaw, J., 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37(6): 515–518. doi:10.1130/G25462a.1.
- Yamashita, F., Fukuyama, E., and Omura, K., 2004. Estimation of fault strength: Reconstruction of stress before the 1995 Kobe earthquake. Science, 306(5694): 261–263.
- Yang, Y.H., Liang, C.T., Fang, L.H., Su, J.R., and Hua, Q., 2018. A comprehensive analysis on the stress field and seismic anisotropy in eastern Tibet. Tectonics, 37(6): 1648–1657. doi:10.1029/2018tc005011.
- Yu, G., Xu, X., Klinger, Y., Diao, G., Chen, G., Feng, X., Li, C., Zhu, A., Yuan, R., Guo, T., Sun, X., Tan, X., and An, Y., 2010. Fault-scarp features and cascading-rupture model for the Mw 7.9 Wenchuan earthquake, eastern Tibetan Plateau, China. Bulletin of the Seismological Society of America, 100(5B): 2590–2614. doi:10.1785/0120090255.
- Zakharova, N.V., and Goldberg, D.S., 2014. In situ stress analysis in the northern Newark Basin: Implications for induced seismicity from CO2 injection. Journal of Geophysical Research: Solid Earth, 119(3): 2362–2374. doi:10.1002/2013jb010492.
- Zang, A., and Stephansson, O., 2010. Stress field of the Earth's crust. Springer, 131–188. ISBN: 978-1-4020-8443-0.
- Zhang, L., and He, C.R., 2013. Frictional properties of natural gouges from Longmen Shan Fault Zone ruptured during the Wenchuan Mw7.9 earthquake. Tectonophysics, 594: 149–164. doi:10.1016/j.tecto.2013.03.030.
- Zhang, P.Z., Xu, X.W., Wen, X.Z., and Ran, Y.K., 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics, 51(4): 1066–1073 (in Chinese with English abstract).
- Zhang, X., Zha, X., and Dai, Z., 2015. Stress changes induced by the 2008 Mw 7.9 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 98: 98–104. doi:10.1016/j.jseaes.2014.10.001.
- Zhang, Y., Dong, S., and Yang, N., 2009. Active faulting pattern, present-day tectonic stress field and block kinematics in the east Tibetan Plateau. Acta Geologica Sinica (English Edition), 83(4): 694–712.
- Zhang, Y.Q., Dong, S.W., Hou, C.T., Shi, J.S., Wu, Z.H., Li, H.L., Sun, P., Liu, G., and Li, J., 2013. Seismogenic structure of the April 20, 2013, Lushan Ms 7 earthquake in Sichuan. Acta Geologica Sinica (English Edition), 87(3): 633–645.
- Zhang, Y., Xu, L., and Chen, Y., 2013. Rupture process of the Lushan 4.20 earthquake and preliminary analysis on the disaster-causing mechanism. Chinese Journal of Geophysics, 56(4): 1408–1411 (in Chinese with English abstract).
- Zhao, G.Z., Unsworth, M.J., Zhan, Y., Wang, L.F., Chen, X.B., Jones, A.G., Tang, J., Xiao, Q.B., Wang, J.J., Cai, J.T., Li, T., Wang, Y.Z., and Zhang, J.H., 2012. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12): 1139–1142. doi:10.1130/G33703.1.
- Zheng Y., Ma, H., Lü, J., Ni, S., Li, Y., and Wei, S., 2009. Source mechanism of strong aftershocks (Ms ≥ 5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 52(6): 739–753. doi:10.1007/s11430-009-0074-3.
- Zhu, S., 2016. Is the 2013 Lushan earthquake (Mw = 6.6) a strong aftershock of the 2008 Wenchuan China mainshock (Mw = 7.9)? Journal of Geodynamics. 99: 16–26 doi:10.1016/j.jog.2016.05.002
- Zoback, M.D., 2000. Earth science: Strength of the San Andreas. Nature, 405: 31–32
- Zoback, M.D., 2007. Reservoir Geomechanics Cambridge: Cambridge University Press, 1–131
- Zoback, M.D., and Haimson, B.C., 1982. Status of the hydraulic fracturing method for in situ stress measurements. In: Rock Mechanics Proceedings of the 23rd U.S. Symposium on Rock Mechanics, Society of Mining Engineers of AIME, New York, 143–156.
- Zoback, M.D., and Healy, J.H., 1992. In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting. Journal of Geophysical Research, 97(B4): 5039–5057
- Zoback, M.D., and Townend J., 2001 Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336: 19–30.