Optimized detection and localization of copy-rotate-move forgeries using biogeography-based optimization algorithm
Corresponding Author
Deepak Joshi MTech
Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India
Correspondence
Deepak Joshi, Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
Email: [email protected]
Search for more papers by this authorAbhishek Kashyap PhD
Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India
Search for more papers by this authorParul Arora PhD
Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India
Search for more papers by this authorCorresponding Author
Deepak Joshi MTech
Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India
Correspondence
Deepak Joshi, Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
Email: [email protected]
Search for more papers by this authorAbhishek Kashyap PhD
Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India
Search for more papers by this authorParul Arora PhD
Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India
Search for more papers by this authorAbstract
In today's digital era, the proliferation of image processing tools has made image forgery detection a critical challenge. Malicious actors exploit these tools to manipulate images, spreading misinformation and misleading society. Existing tampering detection methods struggle with detecting complex transformations such as copy-rotate-move forgeries, often facing limitations in computational efficiency, robustness, and accuracy. Many approaches rely on traditional feature extraction techniques that fail under severe transformations or require extensive processing time. To address these shortcomings, we propose a novel and computationally efficient algorithm that integrates Radon Transform with Biogeography-Based Optimization (BBO) for enhanced copy-rotate-move forgery detection. Unlike conventional optimization techniques, BBO effectively enhances feature selection and matching, improving detection robustness against rotation and scale variations. The proposed algorithm has been rigorously evaluated on multiple benchmark datasets, demonstrating superior performance in terms of F1-score, recall, and accuracy compared to existing state-of-the-art methods. The results affirm that our approach significantly improves forgery localization while maintaining computational efficiency, making it a promising solution for real-world digital forensics applications.
CONFLICT OF INTEREST STATEMENT
The authors have no conflicts of interest to report.
Open Research
DATA AVAILABILITY STATEMENT
The datasets MICC-F220 [58], MICC-F600 [58], and MICC-F2000 [58] are publicly accessible. They can be found at: http://lci.micc.unifi.it/labd/2015/01/copy-move-forgerydetection-and-localization/.
Supporting Information
Filename | Description |
---|---|
jfo70068-sup-0001-FigS1.pngPNG image, 5.2 MB |
Figure S1. |
jfo70068-sup-0002-FigS2.pngPNG image, 5.2 MB |
Figure S2. |
jfo70068-sup-0003-FigS3.pngPNG image, 5.2 MB |
Figure S3. |
jfo70068-sup-0004-FigS4.pngPNG image, 5.2 MB |
Figure S4. |
jfo70068-sup-0005-FigS5.pngPNG image, 5.2 MB |
Figure S5. |
jfo70068-sup-0006-FigS6.pngPNG image, 5.2 MB |
Figure S6. |
jfo70068-sup-0007-FigS7.pngPNG image, 5.2 MB |
Figure S7. |
jfo70068-sup-0008-FigS8.pngPNG image, 5.2 MB |
Figure S8. |
jfo70068-sup-0009-AppendixS1.docxWord 2007 document , 16 KB |
Appendix S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Farid H. Image forgery detection. IEEE Signal Process Mag. 2009; 26(2): 16–25. https://doi.org/10.1109/MSP.2008.931078
- 2Phan-Ho AT, Retraint F. A comparative study of Bayesian and Dempster-Shafer fusion on image forgery detection. IEEE Access. 2022; 10: 99268–99281. https://doi.org/10.1109/ACCESS.2022.3206543
- 3Hosny KM, Mortda AM, Fouda MM, Lashin NA. An efficient CNN model to detect copy-move image forgery. IEEE Access. 2022; 10: 48622–48632. https://doi.org/10.1109/ACCESS.2022.3172273
- 4Lee SI, Park JY, Eom IK. CNN-based copy-move forgery detection using rotation-invariant wavelet feature. IEEE Access. 2022; 10: 106217–106229. https://doi.org/10.1109/ACCESS.2022.3212069
- 5Zhang Y, Zhu G, Wang X, Luo X, Zhou Y, Zhang H, et al. CNN-transformer based generative adversarial network for copy-move source/target Distinguishment. IEEE Trans Circuits Syst Video Technol. 2023; 33(5): 2019–2032. https://doi.org/10.1109/TCSVT.2022.3220630
- 6Gu AR, Nam JH, Lee SC. FBI-net: frequency-based image forgery localization via multitask learning with self-attention. IEEE Access. 2022; 10: 62751–62762. https://doi.org/10.1109/ACCESS.2022.3182024
- 7Kaya M, Sani KJ, Karakus S. Copy-move forgery detection in digital forensic images using CNN. In: Proceedings of the 2022 7th International Conference on Computer Science and Engineering (UBMK); 2022 Sep 14–16; Diyarbakir, Turkey. Piscataway, NJ: IEEE; 2022. p. 239–245. 10.1109/UBMK55850.2022.9919560
- 8Flusser J, Suk T. Degraded image analysis: an invariant approach. IEEE Trans Pattern Anal Mach Intell. 1998; 20(6): 590–603. https://doi.org/10.1109/34.683782
- 9Flusser J, Suk T, Saic S. Recognition of blurred image by the method of moments. IEEE Trans Image Process. 1996; 5(3): 533–538. https://doi.org/10.1109/83.493891
- 10Flusser J, Suk T, Saic S. Image features invariant with respect to blur. Pattern Recognit. 1995; 28: 1723–1732. https://doi.org/10.1016/0031-3203(95)00098-B
- 11Christlein V, Riess C, Jordan J, Angelopoulou E. An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur. 2012; 7(6): 1841–1854. https://doi.org/10.1109/TIFS.2012.2218596
- 12Liu Q, Sung A, Qiao M, Chen Z, Ribeiro B. An improved approach to steganalysis of JPEG images. Inform Sci. 2010; 180(9): 1643–1655. https://doi.org/10.1016/j.ins.2009.12.007
- 13Popescu AC, Farid H. Exposing digital forgeries by detecting traces of resampling. IEEE Trans Signal Process. 2005; 53(2): 758–767. https://doi.org/10.1109/TSP.2004.839903
- 14Mayer O, Stamm MC. Forensic similarity for digital images. IEEE Trans Inf Forensics Secur. 2020; 15: 1331–1346. https://doi.org/10.1109/TIFS.2019.2937023
- 15Yan C, Pun C. Multi-scale difference map fusion for tamper localization using binary ranking hashing. IEEE Trans Inf Forensics Secur. 2017; 12(9): 2144–2158. https://doi.org/10.1109/TIFS.2017.2717957
- 16Liu Y, Xia C, Zhu X, Xu S. Two-stage copy-move forgery detection with self deep matching and proposal SuperGlue. IEEE Trans Image Process. 2022; 31: 541–555. https://doi.org/10.1109/TIP.2021.3137691
- 17Mahdian B, Saic S. Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci Int. 2007; 171(2–3): 180–189. https://doi.org/10.1016/j.forsciint.2006.11.002
- 18Fridrich J, Soukal D, Lukáš J. Detection of copy-move forgery in digital images. In: Proceedings of the Digital Forensic Research Workshop (DFRWS 2003); 2003 Aug 5–8; Cleveland, OH. p. 19–23. http://www.ws.binghamton.edu/fridrich/Research/copymove.pdf
- 19Popescu AC, Farid H. Exposing digital forgeries by detecting duplicated image regions. Technical Report TR2004-515. Hanover, NH: Dartmouth College, Department of Computer Science; 2004. https://digitalcommons.dartmouth.edu/cs_tr/254
- 20Lin HJ, Wang CW, Kao YT. Fast copy-move forgery detection. WSEAS Trans Signal Process. 2009; 5(5): 188–197. https://doi.org/10.5555/1639329.1639332
10.5555/1639329.1639332 Google Scholar
- 21Huang Y, Lu W, Sun W, Long D. Improved DCT-based detection of copy-move forgery in images. Forensic Sci Int. 2011; 206(1–3): 178–184. https://doi.org/10.1016/j.forsciint.2010.08.001
- 22Zhang J, Feng Z, Su Y. A new approach for detecting copy-move forgery in digital images. In: 2008 11th IEEE Singapore International Conference on Communication Systems; 2008 Nov 19–21; Guangzhou, China. Piscataway, NJ: IEEE; 2008. p. 362–366. https://doi.org/10.1109/ICCS.2008.4737205
10.1109/ICCS.2008.4737205 Google Scholar
- 23Kashyap A, Joshi SD. Detection of copy-move forgery using wavelet decomposition. In: 2013 International Conference on Signal Processing and Communication (ICSC); 2013 Dec 12–14; Noida, India. Piscataway, NJ: IEEE; 2013. p. 396–400. https://doi.org/10.1109/ICSPCom.2013.6719820
10.1109/ICSPCom.2013.6719820 Google Scholar
- 24Dixit R, Naskar R. Copy-rotate-move forgery detection using complex wavelet transform and local binary pattern. In: Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT); 2019 Jul 6–8; Kanpur, India. Piscataway, NJ: IEEE; 2019. p. 1–7. https://doi.org/10.1109/ICCCNT45670.2019.8944866
10.1109/ICCCNT45670.2019.8944866 Google Scholar
- 25Kang X, Wei S. Identifying tampered regions using singular value decomposition in digital image forensics. Proc 2008 Int Conf Comput Sci Softw Eng. 2008; 3: 926–930. https://doi.org/10.1109/CSSE.2008.876
10.1109/CSSE.2008.876 Google Scholar
- 26Bayram S, Sencar HT, Memon N. An efficient and robust method for detecting copy-move forgery. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2009 Apr 19–24; Taipei, Taiwan. Piscataway, NJ: IEEE; 2009. p. 1053–10566. https://doi.org/10.1109/ICASSP.2009.4959768
10.1109/ICASSP.2009.4959768 Google Scholar
- 27Sun W, Zhang F, Qiao B, Li B. Improving image copy-move forgery detection with particle swarm optimization techniques. China Commun. 2016; 13(1): 139–149. https://doi.org/10.1109/CC.2016.7405711
10.1109/CC.2016.7405711 Google Scholar
- 28Kashyap A, Suresh B, Gupta H. Robust detection of copy-move forgery based on wavelet decomposition and firefly algorithm. Comput J. 2022; 65(4): 983–996. https://doi.org/10.1093/comjnl/bxab013
- 29Ahmed IT, Hammad BT, Jamil N. Image copy-move forgery detection algorithms based on spatial feature domain. In: Proceedings of the 2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA); 2021 Mar 5–7; Penang, Malaysia. Piscataway, NJ: IEEE; 2021. p. 92–96. https://doi.org/10.1109/CSPA52141.2021.9377272
10.1109/CSPA52141.2021.9377272 Google Scholar
- 30Muzaffer G, Ulutaş G, Ustubioglu B. Copy-move forgery detection with quadtree decomposition segmentation. In: Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP); 2020 Jul 7–9; Milan, Italy. Piscataway, NJ: IEEE; 2020. p. 208–211. https://doi.org/10.1109/TSP49548.2020.9163516
10.1109/TSP49548.2020.9163516 Google Scholar
- 31Qi S, Zhang Y, Wang C, Zhou J, Cao X. A principled design of image representation: towards forensic tasks. IEEE Trans Pattern Anal Mach Intell. 2023; 45(5): 5337–5354. https://doi.org/10.1109/TPAMI.2022.3204971
- 32Diwan A, Kumar D, Mahadeva R, Perera HCS, Alawatugoda J. Unveiling copy-move forgeries: enhancing detection with SuperPoint keypoint architecture. IEEE Access. 2023; 11: 86132–86148. https://doi.org/10.1109/ACCESS.2023.3304728
- 33Diwan A, Mahadeva R, Gupta V. Advancing copy-move manipulation detection in complex image scenarios through multiscale detector. IEEE Access. 2024; 12: 64736–64753. https://doi.org/10.1109/ACCESS.2024.3397466
- 34Chen B, Tan W, Coatrieux G, Zheng Y, Shi YQ. A serial image copy-move forgery localization scheme with source/target distinguishment. IEEE Trans Multimedia. 2021; 23: 3506–3517. https://doi.org/10.1109/TMM.2020.3026868
- 35Babu SBGT, Rao CS. Copy-move forgery verification in images using local feature extractors and optimized classifiers. Big Data Min Anal. 2023; 6(3): 347–360. https://doi.org/10.26599/BDMA.2022.9020029
- 36Wang C, Huang Z, Qi S, Yu Y, Shen G, Zhang Y. Shrinking the semantic gap: spatial pooling of local moment invariants for copy-move forgery detection. IEEE Trans Inf Forensics Secur. 2023; 18: 1064–1079. https://doi.org/10.1109/TIFS.2023.3234861
- 37Deb P, Deb S, Das A, Kar N. Image forgery detection techniques: latest trends and key challenges. IEEE Access. 2024; 12: 169452–169466. https://doi.org/10.1109/ACCESS.2024.3498340
- 38Wang J, Nie J, Jing NT, Liang X, Wang XD, Chi CH, et al. Copy-move forgery image detection based on cross-scale modeling and alternating refinement. IEEE Trans Multimedia. 2025. p. 1–14. https://doi.org/10.1109/TMM.2025.3543057
10.1109/TMM.2025.3543057 Google Scholar
- 39Deb P, Kar N, Hassan KL, Biswas B. Advanced copy-move forgery detection: utilizing AKAZE in conjunction with SIFT algorithm for image forensics. Microsyst Technol. 2025; 31: 801–809. https://doi.org/10.1007/s00542-024-05773-1
- 40Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008; 12(6): 702–713. https://doi.org/10.1109/TEVC.2008.919004
- 41Ma H, Simon D, Siarry P, Yang Z, Fei M. Biogeography-based optimization: a 10-year review. IEEE Trans Emerg Top Comput Intell. 2017; 1(5): 391–407. https://doi.org/10.1109/TETCI.2017.2739124
- 42Bhattacharya A, Chattopadhyay PK. Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst. 2010; 25(4): 1955–1964. https://doi.org/10.1109/TPWRS.2010.2043270
- 43Zhang X, Wang D, Chen H. Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation. IEEE Access. 2019; 7: 28810–28825. https://doi.org/10.1109/ACCESS.2019.2901849
- 44Na X, Han M, Ren W, Zhong K. Modified BBO-based multivariate time-series prediction system with feature subset selection and model parameter optimization. IEEE Trans Cybern. 2022; 52(4): 2163–2173. https://doi.org/10.1109/TCYB.2020.2977375
- 45Li X, Yin M. Multi objective binary biogeography-based optimization for feature selection using gene expression data. IEEE Trans Nanobioscience. 2013; 12(4): 343–353. https://doi.org/10.1109/TNB.2013.2294716
- 46Yang XS. Engineering optimization: an introduction with metaheuristic applications. Hoboken, NJ: John Wiley & Sons; 2010. https://doi.org/10.1002/9780470640425
10.1002/9780470640425 Google Scholar
- 47Kashyap A, Tyagi KD, Tyagi VB. Robust and optimized algorithm for detection of copy-rotate-move tempering. IEEE Access. 2023; 11: 66626–66640. https://doi.org/10.1109/ACCESS.2023.3291128
- 48Daubechies I. Ten lectures on wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1992. https://doi.org/10.1137/1.9781611970104
10.1137/1.9781611970104 Google Scholar
- 49Daubechies I. Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math. 1988; 41(7): 909–996. https://doi.org/10.1002/cpa.3160410705
- 50Williams JR, Amaratunga K. Introduction to wavelets in engineering. Int J Numer Methods Eng. 1994; 37(14): 2365–2388. https://doi.org/10.1002/nme.1620371403
- 51Jiwani LK, Joshi SD, Visweswaran GS. Spectral density driven wavelet representation of 2-D images. In: Proceedings of the 2006 IEEE International Symposium on Signal Processing and Information Technology; 2006 Aug 27–30; Vancouver, BC, Canada. Piscataway, NJ: IEEE; 2006. p. 138–143. https://doi.org/10.1109/ISSPIT.2006.270785
10.1109/ISSPIT.2006.270785 Google Scholar
- 52Hu KM. Visual pattern recognition by moment invariants. IRE Trans Inf Theory. 1962; 8(2): 179–187. https://doi.org/10.1109/TIT.1962.1057692
10.1109/TIT.1962.1057692 Google Scholar
- 53Teh HC, Chin TR. On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell. 1988; 10(4): 496–513. https://doi.org/10.1109/34.3913
- 54Khotanzad A, Hong YH. Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell. 1990; 12(5): 489–497. https://doi.org/10.1109/34.55109
- 55Helgason S. Geometric analysis on symmetric spaces. 2nd ed. Providence, RI: American Mathematical Society; 2008. https://doi.org/10.1090/surv/039
10.1090/surv/039 Google Scholar
- 56Dua S, Singh J, Parthasarathy H. Rotation angle estimation of an image using the least square method. In: Proceedings of the 2016 3rd International Conference Signal Processing and Integrated Networks (SPIN); 2016 Feb 11–12; Noida, India. Piscataway, NJ: IEEE; 2016. p. 296–300. https://doi.org/10.1109/SPIN.2016.7566707
10.1109/SPIN.2016.7566707 Google Scholar
- 57Shlens J. A tutorial on principal component analysis: Derivation, discussion, and singular value decomposition. arXiv:1404.1100; 2014. https://doi.org/10.48550/arXiv.1404.1100
10.48550/arXiv.1404.1100 Google Scholar
- 58Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G. A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur. 2011; 6(3): 1099–1110. https://doi.org/10.1109/TIFS.2011.2129512