Analysis of Ecstasy Tablets Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection†
Suely K. S. S. Porto M.S.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
Serviço de Perícias de Química, Instituto de Criminalística Carlos Éboli, R. Pedro I, 28, Rio de Janeiro, RJ, Brazil
Search for more papers by this authorCorresponding Author
Thiago Nogueira Ph.D.
Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226 São Paulo, SP, Brazil
Additional information and reprint requests:
Thiago Nogueira, Ph.D.
Institute of Astronomy, Geophysics and Atmospheric Sciences
University of São Paulo
Rua do Matão, 1226, São Paulo—SP
CEP 05508-090
Brazil
E-mail: [email protected]
Search for more papers by this authorLucas Blanes Ph.D.
Centre for Forensic Science, University of Technology, Sydney, Broadway, 2001 NSW Australia
Search for more papers by this authorPhilip Doble Ph.D.
Centre for Forensic Science, University of Technology, Sydney, Broadway, 2001 NSW Australia
Search for more papers by this authorBruno D. Sabino Ph.D.
Serviço de Perícias de Química, Instituto de Criminalística Carlos Éboli, R. Pedro I, 28, Rio de Janeiro, RJ, Brazil
Search for more papers by this authorClaudimir L. do Lago Ph.D.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
Search for more papers by this authorLúcio Angnes Ph.D.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
Search for more papers by this authorSuely K. S. S. Porto M.S.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
Serviço de Perícias de Química, Instituto de Criminalística Carlos Éboli, R. Pedro I, 28, Rio de Janeiro, RJ, Brazil
Search for more papers by this authorCorresponding Author
Thiago Nogueira Ph.D.
Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226 São Paulo, SP, Brazil
Additional information and reprint requests:
Thiago Nogueira, Ph.D.
Institute of Astronomy, Geophysics and Atmospheric Sciences
University of São Paulo
Rua do Matão, 1226, São Paulo—SP
CEP 05508-090
Brazil
E-mail: [email protected]
Search for more papers by this authorLucas Blanes Ph.D.
Centre for Forensic Science, University of Technology, Sydney, Broadway, 2001 NSW Australia
Search for more papers by this authorPhilip Doble Ph.D.
Centre for Forensic Science, University of Technology, Sydney, Broadway, 2001 NSW Australia
Search for more papers by this authorBruno D. Sabino Ph.D.
Serviço de Perícias de Química, Instituto de Criminalística Carlos Éboli, R. Pedro I, 28, Rio de Janeiro, RJ, Brazil
Search for more papers by this authorClaudimir L. do Lago Ph.D.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
Search for more papers by this authorLúcio Angnes Ph.D.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
Search for more papers by this authorAbstract
A method for the identification of 3,4-methylenedioxymethamphetamine (MDMA) and meta-chlorophenylpiperazine (mCPP) was developed employing capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D). Sample extraction, separation, and detection of “Ecstasy” tablets were performed in <10 min without sample derivatization. The separation electrolyte was 20 mm TAPS/Lithium, pH 8.7. Average minimal detectable amounts for MDMA and mCPP were 0.04 mg/tablet, several orders of magnitude lower than the minimum amount encountered in a tablet. Seven different Ecstasy tablets seized in Rio de Janeiro, Brazil, were analyzed by CE-C4D and compared against routine gas chromatography-mass spectrometry (GC-MS). The CE method demonstrated sufficient selectivity to discriminate the two target drugs, MDMA and mCPP, from the other drugs present in seizures, namely amphepramone, fenproporex, caffeine, lidocaine, and cocaine. Separation was performed in <90 sec. The advantages of using C4D instead of traditional CE-UV methods for in-field analysis are also discussed.
References
- 1Epple R, Blanes L, Beavis A, Roux C, Doble P. Analysis of amphetamine-type substances by capillary zone electrophoresis using capacitively coupled contactless conductivity detection. Electrophoresis 2010; 31: 2608–13.
- 2da Costa JL, Pintao ER, Corrigliano CMC, Neto ON. Determination of 3,4-methylenedioxymethamphetamine (MDMA) in ecstasy tablets by High Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD). Quim Nova 2009; 32: 965–9.
- 3Landry MJ. MDMA: a review of epidemiologic data. J Psychoactive Drugs 2002; 34: 163–9.
- 4Schurenkamp J, Beike J, Pfeiffer H, Kohler H. Separation of positional CPP isomers by chiral HPLC-DAD of seized tablets. Int J Legal Med 2011; 125: 95–9.
- 5 Europol-EMCDDA Joint report on a new psychoactive substance: 1-(3-chlorphenyl)piperazine (mCPP); http://www.emcdda.europa.eu/themes/new-drugs/early-warning (accessed September 11, 2012).
- 6Maurer HH, Kraemer T, Springer D, Staack RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types - a synopsis. Ther Drug Monit 2004; 26: 127–31.
- 7Klaassen T, Pian KLH, Westenberg HGM, den Boer JA, van Praag HM. Serotonin syndrome after challenge with the 5-HT agonist meta-chlorophenylpiperazine. Psychiat Res 1998; 79: 207–12.
- 8Tancer ME, Johanson CE. The subjective effects of MDMA and mCPP in moderate MDMA users. Drug Alcohol Depend 2001; 65: 97–101.
- 9Romao W, Lalli PM, Franco MF, Sanvido G, Schwab NV, Lanaro R, et al. Chemical profile of meta-chlorophenylpiperazine (m-CPP) in ecstasy tablets by easy ambient sonic-spray ionization, X-ray fluorescence, ion mobility mass spectrometry and NMR. Anal Bioanal Chem 2011; 400: 3053–64.
- 10 SWGDRUG. Methods of analysis/drug identification; http://www.swgdrug.org/Archived/Methods%20of%20Analysis_Drug%20Identification%20102003.pdf (accessed July 10, 2013).
- 11Cheze M, Deveaux M, Martin C, Lhermitte M, Pepin G. Simultaneous analysis of six amphetamines and analogues in hair, blood and urine by LC-ESI-MS/MS Application to the determination of MDMA after low Ecstasy intake. Forensic Sci Int 2007; 170: 100–4.
- 12Concheiro M, Simoes SMD, Quintela O, de Castro A, Dias MJR, Cruz A, et al. Fast LC-MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Sci Int 2007; 171: 44–51.
- 13Brown SD, Rhodes DJ, Pritchard BJ. A validated SPME-GC-MS method for simultaneous quantification of club drugs in human urine. Forensic Sci Int 2007; 171: 142–50.
- 14De Martinis BS, Barnes AJ, Scheidweiler KB, Huestis MA. Development and validation of a disk solid phase extraction and gas chromatography-mass spectrometry method for MDMA, MDA, HMMA, HMA, MDEA, methamphetamine and amphetamine in sweat. J Chromatogr B 2007; 852: 450–8.
- 15Hidvegi E, Fabian P, Hideg Z, Somogyi G. GC-MS determination of amphetamines in serum using on-line trifluoroacetylation. Forensic Sci Int 2006; 161: 119–23.
- 16Clauwaert KM, Van Bocxlaer JF, De Leenheer AP. Stability study of the designer drugs “MDA, MDMA and MDEX” in water, serum, whole blood, and urine under various storage temperatures. Forensic Sci Int 2001; 124: 36–42.
- 17Concheiro M, de Castro A, Quintela O, Lopez-Rivadulla M, Cruz A. Determination of MDMA, MDA, MDEA and MBDB in oral fluid using high performance liquid chromatography with native fluorescence detection. Forensic Sci Int 2005; 150: 221–6.
- 18Mitrevski B, Zdravkovski Z. Rapid and simple method for direct determination of several amphetamines in seized tablets by GC-FID. Forensic Sci Int 2005; 152: 199–203.
- 19Phonchai A, Janchawee B, Prutipanlai S, Thainchaiwattana S. GC-FID optimization and validation for determination of 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine and methamphetamine in ecstasy tablets. J Anal Chem 2010; 65: 951–9.
- 20Patel BN, Sharma N, Sanyal M, Shrivastav PS. High throughput and sensitive determination of trazodone and its primary metabolite, m-chlorophenylpiperazine, in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B 2008; 871: 44–54.
- 21Meng PJ, Fang N, Wang M, Liu HW, Chen DDY. Analysis of amphetamine, methamphetamine and methylenedioxy-methamphetamine by micellar capillary electrophoresis using cation-selective exhaustive injection. Electrophoresis 2006; 27: 3210–7.
- 22Piette V, Parmentier F. Analysis of illicit amphetamine seizures by capillary zone electrophoresis. J Chromatogr A 2002; 979: 345–52.
- 23Weinberger R, Lurie IS. Micellar electrokinetic capillary chromatography of illicit drug substances. Anal Chem 1991; 63: 823–7.
- 24Pascali JP, Bortolotti F, Tagliaro F. Recent advances in the application of CE to forensic sciences, an update over years 2009–2011. Electrophoresis 2012; 33: 117–26.
- 25Tagliaro F, Bortolotti F. Recent advances in the applications of CE to forensic sciences (2001–2004). Electrophoresis 2006; 27: 231–43.
- 26Tagliaro F, Bortolotti F. Recent advances in the applications of CE to forensic sciences (2005–2007). Electrophoresis 2008; 29: 260–8.
- 27Tagliaro F, Pascali J, Fanigliulo A, Bortolotti F. Recent advances in the application of CE to forensic sciences: a update over years 2007–2009. Electrophoresis 2010; 31: 251–9.
- 28Lloyd A, Blanes L, Beavis A, Roux C, Doble P. A rapid method for the in-field analysis of amphetamines employing the Agilent Bioanalyzer. Anal Methods 2011; 3: 1535–9.
- 29Brito-Neto JGA, da Silva JAF, Blanes L, do Lago CL. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals. Electroanal 2005; 17: 1198–206.
- 30Elbashir AA, Aboul-Enein HY. Recent advances in applications of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D): an update. Biomed Chromatogr 2012; 26: 990–1000.
- 31Yu H, Xu XY, Sun JY, You TY. Recent progress for capillary electrophoresis with electrochemical detection. Cent Eur J Chem 2012; 10: 639–51.
- 32Kuban P, Hauser PC. Capacitively coupled contactless conductivity detection for microseparation techniques - recent developments. Electrophoresis 2011; 32: 30–42.
- 33Kuban P, Hauser PC. Ten years of axial capacitively coupled contactless conductivity detection for CZE - a review. Electrophoresis 2009; 30: 176–88.
- 34da Silva JAF, do Lago CL. An oscillometric detector for capillary electrophoresis. Anal Chem 1998; 70: 4339–43.
- 35da Silva JAF, Guzman N, do Lago CL. Contactless conductivity detection for capillary electrophoresis - Hardware improvements and optimization of the input-signal amplitude and frequency. J Chromatogr A 2002; 942: 249–58.
- 36Francisco KJM, do Lago CL. A compact and high-resolution version of a capacitively coupled contactless conductivity detector. Electrophoresis 2009; 30: 3458–64.
- 37Brito-Neto JGA, da Silva JAF, Blanes L, do Lago CL. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 2. Peak shape, stray capacitance, noise, and actual electronics. Electroanal 2005; 17: 1207–14.