Associative Learning of Nasonia vitripennis Walker (Hymenoptera:Pteromalidae) to Methyldisulfanylmethane†
Corresponding Author
Christine Frederickx Ph.D.
Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Additional information and reprint requests:
Christine Frederickx, Ph.D.
Unité d'Entomologie Fonctionnelle et Evolutive
Gembloux Agro-Bio Tech
Passage des Déportés 2
B-5030 Gembloux
Belgium
E-mail: [email protected]
Search for more papers by this authorFrançois J. Verheggen Ph.D.
Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Search for more papers by this authorYves Brostaux Ph.D.
Department of Applied Statistics, Computer Science and Mathematics, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Search for more papers by this authorEric Haubruge Ph.D.
Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Search for more papers by this authorCorresponding Author
Christine Frederickx Ph.D.
Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Additional information and reprint requests:
Christine Frederickx, Ph.D.
Unité d'Entomologie Fonctionnelle et Evolutive
Gembloux Agro-Bio Tech
Passage des Déportés 2
B-5030 Gembloux
Belgium
E-mail: [email protected]
Search for more papers by this authorFrançois J. Verheggen Ph.D.
Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Search for more papers by this authorYves Brostaux Ph.D.
Department of Applied Statistics, Computer Science and Mathematics, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Search for more papers by this authorEric Haubruge Ph.D.
Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
Search for more papers by this authorAbstract
Traditional methods of volatile detection used by police typically consist of reliance on canine olfaction. However, dogs have some limitations such as cost of training and time of conditioning. The possibility of using parasitic wasps for detecting explosives and narcotics has been developed. Moreover, wasps are cheap to produce and can be conditioned with impressive speed for a specific chemical detection task. We examined the ability of Nasonia vitripennis Walker to learn and respond to methyldisulfanylmethane (DMDS), a volatile discriminator of cadaver. The training aimed to form an association between an unconditioned stimulus (pupae) and the conditioned stimulus (odor source). After the training, the time spent by conditioned wasps in the DMDS chamber was measured. Statistical analysis showed that the increasing concentrations involved an increase in the time spent in the chamber containing DMDS. This study indicates that N. vitripennis can respond to DMDS, which provide further support for its development as a biological sensor.
References
- 1Tomberlin J, Tertuliano M, Rains G, Lewis W. Conditioned Microplitis croceipes Cresson (Hymenoptera: Braconidae) detect and respond to 2, 4-DNT: development of a biological sensor. J Forensic Sci 2005; 50(5): 1187–90.
- 2Riveros AJ, Gronenberg W. Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften 2009; 96(7): 851–6.
- 3Schurmann D, Collatz J, Hagenbucher S, Ruther J, Steidle J. Olfactory host finding, intermediate memory and its potential ecological adaptation in Nasonia vitripennis. Naturwissenschaften 2009; 96(3): 383–91.
- 4Rains GC, Tomberlin JK, Kulasiri D. Using insect sniffing devices for detection. Trends Biotechnol 2008; 26(6): 288–94.
- 5Rains GC, Tomberlin JK, D'Alessandro M, Lewis WJ. Limits of volatile chemical detection of a parasitoid wasp, Microplitis croceipes, and an electronic nose: a comparative study. T Asea 2004; 47(6): 2145–52.
- 6Rains GC, Utley SL, Lewis WJ. Behavioral monitoring of trained insects for chemical detection. Biotechnol Prog 2006; 22(1): 2–8.
- 7Tertuliano M, Tomberlin JK, Jurjevic Z, Wilson D, Rains GC, Lewis WJ. The ability of conditioned Microplitis croceipes (Hymenoptera: Braconidae) to distinguish between odors of aflatoxigenic and non-aflatoxigenic fungal strains. Chemoecology 2005; 15(2): 89–95.
- 8Papaj DR, Lewis AC. Insect learning. Ecology and evolutionary perspectives. New York, NY: Chapman & Hall, 1993.
- 9Davis PJ, Wadhams L, Baylis JS, inventors. Inscentinel Limited, assignee. Detection of odors using insects. US patent 7,237,504. 2007 Jul 3.
- 10Takasu K, Rains G, Lewis W. Comparison of detection ability of learned odors between males and females in the larval parasitoid Microplitis croceipes. Entomol Exp Appl 2007; 122: 247–51.
- 11Olson DM, Rains GC, Meiners T, Takasu K, Tertuliano M, Tumlinson JH, et al. Parasitic wasps learn and report diverse chemicals with unique conditionable behaviors. Chem Senses 2003; 28(6): 545–9.
- 12King TL, Horine FM, Daly KC, Smith BH. Explosives detection with hard-wired moths. Proceedings of the 20th IEEE: 2003 May 20-22; (2) 1669–72.
- 13Vet LEM, Lewis WJ, Papaj DR, Vanlenteren JC. A variable response model for parasitoid foraging behavior. J Insect Behav 1990; 3(4): 471–90.
- 14Lewis WJ, Tumlinson JH. Host detection by chemically mediated associative learning in a parasitic wasp. Nature 1988; 331(6153): 257–9.
10.1038/331257a0 Google Scholar
- 15Vet LEM, Groenewold AW. Semiochemicals and learning in parasitoids. J Chem Ecol 1990; 16(11): 3119–35.
- 16Baeder J, King B. Associative learning of color by males of the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). J Insect Behav 2004; 17(2): 201–13.
- 17Wäckers F, Bonifay C, Lewis W. Conditioning of appetitive behavior in the Hymenopteran parasitoid Microplitis croceipes. Entomol Exp Appl 2002; 103: 135–8.
10.1046/j.1570-7458.2002.00970.x Google Scholar
- 18Turlings TCJ, Wäckers FL, Vet LEM, Lewis WJ, Tumlinson JH. Learning of host-finding cues by hymenopterous parasitoids. In: DR Papaj, AC Lewis, editors. Insect learning. New York, NY: Chapman & Hall, 1992; 51–78.
- 19Vinson SB. Chemical signals used by parasitoids. Redia, Geornale de Zool 1991; 124: 15–42.
- 20Meiners T, Wackers F, Lewis WJ. Associative learning of complex odours in parasitoid host location. Chem Senses 2003; 28(3): 231–6.
- 21Shaw JA, Seldomridge NL, Dunkle DL, Nugent PW, Spangler LH, Bromenshenk JJ, et al. Polarization lidar measurements of honey bees in flight for locating land mines. Opt Express 2005; 13(15): 5853–63.
- 22Tomberlin J, Rains G, Sanford M. Development of Microplitis croceipes as a biological sensor. Entomol Exp Appl 2008; 128: 249–57.
- 23Hall RD, Huntington TE. Introduction: perception and status of forensic entomology. In: JH Byrd, JL Castner, editors. Forensic entomology: the utility of arthropods in legal investigations. Boca Raton, FL: CRC Press, 2009; 1–16.
- 24Gennard DE. Forensic entomology: an introduction, Chichester, West Sussex, U.K.: John Wiley & Sons, Ltd., 2007.
- 25Amendt J, Krettek R, Zehner R. Forensic entomology. Naturwissenschaften 2004; 91: 51–65.
- 26Wyss C, Cherix D. Traité d'Entomologie forensique: les insectes sur la scène de crime. Lausanne, Switerland: Presses Polytechniques et Universitaires romandes, 2006.
- 27Arnaldos MI, García MD, Romera E, Presa JJ, Luna A. Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. Forensic Sci Int 2005; 149: 57–65.
- 28Harper RJ, Furton KG. Biological detection of explosives. In: J Yinon, editor. Counterterrorist detection techniques of explosives. Amsterdam: Elsevier, 2007; 395–431.
10.1016/B978-044452204-7/50032-8 Google Scholar
- 29Whiting AR. The biology of the parasitic wasp Mormoniella vitripennis (= Nasonia brevicornis) (Walker). Q Rev Biol 1967; 42: 333–406.
- 30Darling C, Werren JH. Biosystematics of Nasonia (Hymenoptera: Pteromalidae): two new species reared from birds' nests in North America. Ann Entomol Soc Am 1990; 83(3): 352–70.
- 31Yoder J, Rivers D, Denlinger D. Water relationships in the ectoparasitoid Nasonia vitripennis during larval diapause. Physiol Entomol 1994; 19: 373–8.
- 32Steiner S, Hermann N, Ruther J. Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 2006; 32: 1687–702.
- 33Grassberger M, Frank C. Temperature-related development of the parasitoid wasp Nasonia vitripennis as forensic indicator. Med Vet Entomol 2003; 17: 257–62.
- 34Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, et al. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 2009; 189: 46–53.
- 35Vass AA, Smith RR, Thompson CV, Burnett MN, Wolf DA, Synstelien JA, et al. Decompositional odor analysis database. J Forensic Sci 2004; 49(4): 760–9.
- 36Statheropoulos M, Spiliopouiou C, Agapiou A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 2005; 153(2–3): 147–55.
- 37Statheropoulos M, Agapiou A, Spiliopouiou C, Pallis GC, Sianos E. Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ 2007; 385(1–3): 221–7.
- 38Paczkowski S, Weibbecker B, Schöning MJ, Schütz S. Biosensors on the basis of insect olfaction. In: A Vilcinskas, editor. Insect biotechnology. New York, NY: Springer, 2011; 225–40.
- 39Anuta J. A Bug's nose; http://www.rps.psu.edu/indepth/bugsnose.html.
- 40Frederickx C, Dekeirsschieter J, Verheggen FJ, Haubruge E. Host-habitat location by the parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). J Forensic Sci 2013; doi: 10.1111/1556-4029.12267.
10.1111/1556‐4029.12267 Google Scholar
- 41Barron A. The life and death of Hopkins' host-selection principle. J Insect Behav 2001; 14(6): 725–37.
- 42Barron A, Corbet S. Behavioural induction in Drosophila timing and specificity. Entomol Exp Appl 2000; 94: 159–71.
- 43Chabaud MA, Devaud JM, Pham-Delegue MH, Preat T, Kaiser L. Olfactory conditioning of proboscis activity in Drosophila melanogaster. J Comp Physiol A 2006; 192(12): 1335–48.