Cardiovascular Ageing in Health Sets the Stage for Cardiovascular Disease
Edward G. Lakatta MD
Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Ageing, National Institute of Health, Baltimore, Maryland, USA
Search for more papers by this authorEdward G. Lakatta MD
Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Ageing, National Institute of Health, Baltimore, Maryland, USA
Search for more papers by this authorAbstract
The incidence and prevalence of coronary disease, hypertension, heart failure and stroke increase exponentially with advancing age. While epidemiologic studies have discovered that aspects of lifestyle and genetics are risk factors for these diseases, age, per se, confers the major risk. Thus, it is reasonable to hypothesise that specific pathophysiological mechanisms that underlie these diseases become superimposed on cardiac and vascular substrates that have been modified by an ‘ageing process’, and that the latter modulates disease occurrence and severity. In order to unravel this age−disease interaction, the nature of the ageing process in the heart and vasculature requires elucidation. Some aspects of the current understanding of ageing of the heart and blood vessels in the absence of apparent disease are the focus of this review. (Heart, Lung and Circulation 2002; 11: 76−91)
References
- 1 Gerstenblith G, Frederiksen J, Yin FCP, Fortuin NJ, Lakatta EG, Weisfeldt ML. Echocardiographic assessment of a normal adult aging population. Circulation 1977; 56: 273 − 8.
- 2 Nagai J, Metter EJ, Earley CJ et al. Increased carotid artery intimal−medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation 1998; 98: 1504 − 9.
- 3 Vaitkevicius PV, Fleg JL, Engel JH. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 1993; 88: 1456 − 62.
- 4 Pearson JD, Morrell CH, Brant LJ et al. Age-associated changes in blood pressure in a longitudinal study of healthy men and women. J. Gerontol. 1997; 52: M177 − 83.
- 5 Fleg JL, O'Connor F, Gerstenblith G et al. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J. Appl. Physiol. 1995; 78: 890 − 900.
- 6 Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 1993; 73: 413 − 65.
- 7 Li Z, Froehlich J, Galis ZS, Lakatta EG. Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 1999; 33: 116 − 23.
- 8 Wang M, Lakatta EG. Discordant regulation of matrix metalloproteinase-2 in age associated aortic remodeling. J. Mol. Cell. Cardiol. 2001; 33: A128.
- 9 Michel JB, Heudes D, Michel O et al. Effect of chronic ANG I-converting enzyme inhibition on aging processes. II. Large arteries. Am. J. Physiol. 1994; 267: R124 − 35.
- 10 Olivetti GM, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 1991; 68: 1560 − 8.
- 11 Olivetti G, Giordano G, Corradi D et al. Gender differences and aging: Effects in the human heart. J. Am. Coll. Cardiol. 1995; 26: 1068 − 79.
- 12 Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 1993; 73: 413 − 67.
- 13 Schulman S, Lakatta EG, Fleg JL et al. Age-related decline in left ventricular filling at rest and exercise. Am. J. Physiol. 1992; 263: H1932 − 8.
- 14 Chen C-H, Nakayama M, Talbot M et al. Verapamil acutely reduces ventricular−vascular stiffening and improves aerobic exercise performance in elderly individuals. J. Am. Coll. Cardiol. 1999; 33: 1602.
- 15 Nussbacher A, Gerstenblith G, O'Connor F et al. Hemodynamic effects of unloading the old heart. Am. J. Physiol. 1999; 277: H1863 − 71.
- 16 Schulman SP, Fleg JL, Goldberg AP et al. Continuum of cardiovascular performance across a broad range of fitness levels in healthy older men. Circulation 1996; 94: 359 − 67.
- 17 Lakatta EG. Deficient neuroendocrine regulation of the cardiovascular system with advancing age in healthy humans (point of view). Circulation 1993; 87: 631 − 6.
- 18 Lakatta EG, Zhou Y-Y, Xiao R-P, Boluyt MO. Aging of the cardiovascular system. In: N Sperelakis, Y Kurachi, A Terzic, M Cohen (Eds), Heart Physiology and Pathophysiology, 4th edn. Academic Press, San Diego, 2000, pp. 737 − 60.
- 19 Esler MD, Turner AG, Kaye DM et al. Aging effects on human sympathetic neuronal function. Am. J. Physiol. 1995; 268: R278 − 85.
- 20 Brodde OE, Zerkowski HR, Schranz D et al. Age-dependent changes in the β-adrenoceptor-G-protein (s)−adenylyl cyclase system in human right atrium. J. Cardiovasc. Pharmacol. 1995; 26: 20 − 6.
- 21 White M, Roden R, Minobe W et al. Age-related changes in β-adrenergic neuroeffector systems in the human heart. Circulation 1994; 90: 1225 − 38.
- 22 Yin FCP, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG. Use of tibal length to quantify cardiac hypertrophy: Application in the aging rat. Am. J. Physiol. 1982; 243: H941 − 7.
- 23 Yin FCP, Spurgeon HA, Weisfeldt ML, Lakatta EG. Mechanical properties of myocardium from hypertrophied rat hearts. A comparison between hypertrophy induced by senescence and by aortic banding. Circ. Res. 1980; 46: 292 − 300.
- 24 Shreiner DP, Weisfeldt ML, Shock NW. Effects of age, sex, and breeding status on the rat heart. Am. J. Physiol. 1969; 217: 176 − 80.
- 25 Rothbaum DA, Shaw DJ, Angell CS, Shock NW. Cardiac performance in the unanesthetized senescent male rat. J. Gerontol. 1973; 28: 287 − 92.
- 26 Weisfeldt ML, Loeven WA, Shock NW. Resting and active mechanical properties of trabeculae carneae from aged male rats. Am. J. Physiol. 1971; 220: 1921 − 7.
- 27 Besse S, Robert V, Assayag P, Delcayre C, Swynghedauw B. Non synchronous changes in myocardial collagen mRNA and protein during aging. Effect of DOCA-salt hypertension. Am. J. Physiol. 1994; 267: H2237 − 44.
- 28 Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ. Res. 1990; 67: 871 − 85.
- 29 Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld O. Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc. Res. 1989; 23: 723 − 9.
- 30 Mamuya WS, Chobanian A, Brecher P. Age related changes in fibronectin expression in spontaneously hypertensive Wistar−Kyoto and Wistar rat hearts. Circ. Res. 1992; 71: 1341 − 50.
- 31 Lakatta EG, Yin FCP. Myocardial aging: Functional alterations and related cellular mechanisms. (Invited Rev.) Am. J. Physiol. 1982; 242: H927 − 41.
- 32 Fraticelli A, Josephson R, Danziger R, Lakatta E, Spurgeon H. Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am. J. Physiol. 1989; 257: H259 − 65.
- 33 Kajstura J, Cheng W, Sarangarajan R. et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am. J. Physiol. 1996; 271: H1215 − 28.
- 34 Wei JY, Spurgeon HA, Lakatta EG. Excitation−contraction in rat myocardium: Alterations with adult aging. Am. J. Physiol. 1984; 246: H784 − 91.
- 35 Orchard CH, Lakatta EG. Intracellular calcium transients and developed tensions in rat heart muscle. A mechanism for the negative interval−strength relationship. J. Gen. Physiol. 1995; 86: 637 − 51.
- 36 Froehlich JP, Lakatta EG, Beard E, Spurgeon HA, Weisfeldt ML, Gerstenblith G. Studies of sarcoplasmic reticulum function and contraction duration in young and aged rat myocardium. J. Mol. Cell. Cardiol. 1978; 10: 427 − 38.
- 37 Lompre AM, Lambert F, Lakatta EG, Schwartz K. Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ. Res. 1991; 69: 1380 − 8.
- 38 Rohrer DK, Hartong R, Dillmann W. Influence of thyroid hormone and retinoic acid on slow sarcoplasmic reticulum Ca2+ATPase and myosin heavy chain α gene expression in cardiac myocytes. J. Biol. Chem. 1991; 266: 8638 − 46.
- 39 Fisher SA, Buttrick PM, Sukovich D, Periasamy M. Characterization of promoter elements of the rabbit cardiac sarcoplasmic reticulum Ca2+-ATPhase gene required for expression in cardiac muscle cells. Circ. Res. 1993; 73: 622 − 8.
- 40 Koban MU, Moorman AFM, Holtz H, Yacoub MH, Boheler KR. Expressional analysis of the cardiac Na/Ca exchanger in rat development and senescence. Cardiovasc. Res. 1998; 37: 405 − 23.
- 41 Zhang SJ, Zhou YY, Xiao R-P, Lakatta EG. Age-associated reduction in recovery of the equilibrium state of myocyte length during reduced interstimulus intervals at higher stimulation rates. Biophys. J. 2000; 78: 227A.
- 42 Lim CC, Apstein CS, Colucci WS, Liao R. Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to senescent mouse cardiomyocyte. J. Mol. Cell. Cardiol. 2000; 32: 2075 − 82.
- 43 Schmidt U, Del Monte F, Miyamoto MI et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation 2000; 101: 790 − 6.
- 44 Leng X, Blanco J, Tsai S, Ozato K, O"Malley B, Tsai M. Mechanisms for synergistic activation of thyroid horomone receptor and retinoid X receptor on different response elements. J. Biol. Chem. 1994; 269: 31 436 − 42 .
- 45 Edwards JG, Bahl JJ, Flink IL, Cheng S-Y, Morkin E. Thyroid hormone influences β myosin heavy chain (βMHC) expression. Biochem. Biophys. Res. Commun. 1994; 199: 1482 − 8.DOI: 10.1006/bbrc.1994.1398
- 46 Yen P, Darling D, Carter R, Forgione M, Umeda P, Chin W. Triiodothyronine (T3) decreases binding to DNA by T3-receptor homodimers but not receptor auxiliary protein heterodimers. J. Biol. Chem. 1992; 267: 3565 − 8.
- 47 Gustafson T, Markham B, Morkin E. Analysis of thyroid hormone effects on myosin heavy chain gene expression in cardiac and soleus muscles using a novel dot-blot mRNA assay. Biochem. Biophys. Res. Commun. 1985; 130: 1161 − 7.
- 48 Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. Hormonal modulation of a gene injected into rat heart in vivo. Proc. Natl Acad. Sci. USA 1991; 88: 4138 − 42.
- 49 Effron MB, Bhatnagar GM, Spurgeon HA, Ruano-Arroyo G, Lakatta EG. Changes in myosin isoenzymes, ATPase activity, and contraction duration in rat cardiac muscle with aging can be modulated by thyroxine. Circ. Res. 1987; 60: 238 − 45.
- 50 Long X, Boluyt MO, O"Neill L et al. Myocardial retinoid X receptor, thyroid hormone receptor, and myosin heavy chain gene expression in the rat during adult aging. J. Gerontol. A. Biol. Sci. Med. Sci. 1999; 54: B23 − 7.
- 51 Xiao R-P, Spurgeon HA, O'Connor F et al. Age-associated changes in β-adrenergic modulation on rat cardiac excitation-contraction coupling. J. Clin. Invest. 1994; 94: 2051 − 9.
- 52 Xiao R-P, Tomhave ED, Xiangwu J et al. Age-associated reductions in cardiac β1- and β2- adrenoceptor responses without changes in inhibitory G proteins or receptor kinases. J. Clin. Invest. 1998; 101: 1273 − 82.
- 53 Xiao R-P, Cheng H, Zhou Y, Kuschel M, Lakatta E. Recent advances in cardiac β2-adrenergic signal transduction. Circ. Res. 1999; 85: 1092 − 100.
- 54 Jiang MT, Moffat MP, Narayanan N. Age-related alterations in the phosphorylation of sarcoplasmic reticulum and myofibrillar proteins and diminished contractile response to isoproterenol in intact rat ventricle. Circ. Res. 1993; 72: 102 − 11.
- 55 Sakai M, Danziger RS, Staddon JM, Lakatta EG, Hansford RG. Decrease with senescence in the norepinephrine-induced phosphorylation of myofilament proteins in isolated rat cardiac myocytes. J. Mol. Cell. Cardiol. 1989; 21: 1327 − 36.
- 56 Scarpace PJ. Forskolin activation of adenylate cyclase in rat myocardium with age: Effects of guanine nucleotide analogs. Mech. Ageing Dev. 1990; 52: 169 − 78.
- 57 Böhm M, Dorner H, Htun P, Lensche H, Platt D, Erdmann E. Effects of exercise on myocardial adenylate cyclase and Gia expression in senescence. Am. J. Physiol. 1993; 264: H805 − 14.
- 58 Younes A, Boluyt MO, O'Neill L, Meredith AL, Crow MT, Lakatta EG. Age-associated alterations in atrial natriuretic factor gene expression in rat. Am. J. Physiol. 1995; 269: H1003 − 8.
- 59 Boluyt MO, Younes A, Caffrey JL et al. Age-associated increase in rat cardiac opioid production. Am. J. Physiol. 1993; 265: H212 − 18.
- 60 Reckelhoff JF, Morris M, Bayliss C. Basal and stimulated plasma atrial natriuretic peptide (ANP) concentrations and cardiac ANP contents in old and young rats. Mech. Ageing Dev. 1992; 63: 177 − 81.
- 61 Takahashi T, Schunkert H, Isoyama S et al. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J. Clin. Invest. 1992; 89: 939 − 46.
- 62 Calderone A, Thaik CM, Takahashi N, Chang DLF, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J. Clin. Invest. 1998; 101: 812 − 18.
- 63 Caffrey JL, Boluyt MO, Younes A et al. Aging, cardiac proenkephalin mRNA and enkephalin peptides in the Fisher 344 rat. J. Mol. Cell. Cardiol. 1994; 26: 701 − 11.
- 64 McLaughlin PJ. Regulation of DNA synthesis of myocardial and epicardial cells in developing rat heart by [Met5] enkephalin. Am. J. Physiol. 1996; 271: R122 − 9.
- 65 Boluyt MO, Long X, Eschenhagen T et al. Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart. Am. J. Physiol. 1995; 269: H638 − 47.
- 66 Ventura C, Spurgeon H, Lakatta EG, Guarnieri C, Capogrossi M. Kappa and delta opioid receptor stimulation affects cardiac myocyte function and Ca2+ release from an intracellular pool in myocytes and neurons. Circ Res. 1992; 70: 66 − 81.
- 67 Xiao R-P, Pepe S, Spurgeon HA, Capogrossi MC, Lakatta EG. Opioid peptide receptor stimulation reverses β-adrenergic effects in rat heart cells. Am. J. Physiol. 1997; 272: H797 − 805.
- 68 Pepe S, Xiao R-P, Hohl C, Altschuld R, Lakatta EG. Cardiac adenylyl cyclase regulation by opioid and adrenergic signal interactions. Circulation 1995; 92 (Suppl.): I236 − 7.
- 69
Lakatta EG,
Sollott SJ,
Pepe S.
The old heart: Operating on the edge. In: Ageing Vulnerability. Causes and Interventions. Novartis Foundation Symposium 235. John Wiley and Sons, London UK, 2001, pp. 172
−
201.
10.1002/0470868694.ch15 Google Scholar
- 70 Hano O, Bogdanov KY, Sakai M, Danziger RG, Spurgeon HA, Lakatta EG. Reduced threshold for myocardial cell calcium intolerance in the rat heart with aging. Heart Circ. Physiol. 1995; 38: H1607 − 12.
- 71 Lakatta EG. Functional implications of spontaneous sarcoplasmic reticulum Ca2+ release in the heart. Cardiovasc. Res. 1992; 26: 193 − 214.
- 72 Meerson FZ, Javich MP, Lerman MI. Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyperfunction and on aging. J. Mol. Cell. Cardiol., 1978; 10: 145 − 59.
- 73 Sadoshima J, Izumo S. Rapamyocin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ. Res. 1995; 77: 1040 − 52.
- 74 Spurgeon HA, Steinbach MF, Lakatta EG. Chronic exercise prevents characteristic age-related changes in rat cardiac contraction. Am. J. Physiol. 1993; 244: H513 − 18.
- 75 Tate CA, Helgason T, Hyek MF et al. SERCA2a and mitrochrondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. Am. J. Physiol. 1996; 271: H68 − 72.
- 76 Brenner DA, Apstein CS, Saupe KW. Exercise training attenuates age-associated diastolic dysfunction in rats. Circulation 2001; 104: 221 − 6.
- 77 Reaven EP, Reaven GM. Structure and function changes in the endocrine pancreas of aging rats with reference to the modulating effects of exercise and caloric restrictions. J. Clin. Invest. 1981; 68: 75 − 84.
- 78 Molkentin JD, Lu JR, Antos CL et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998; 93: 215 − 28.
- 79 Shunkert H, Weinberg E, Bruckschlegel G, Riegger AJG, Lorell B. Alteration of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding. J. Clin. Invest. 1995; 96: 2768 − 74.
- 80 Shida M, Isoyama S. Effects of age on c-ƒos and c-myc gene expression in response to hemodynamic stress in isolated, perfused rat hearts. J. Mol. Cell. Cardiol. 1993; 25: 1025 − 35.
- 81 Isoyama S, Grossman W, Wei JY. Effect of age on myocardial adaptation to volume overload in the rat. J. Clin. Invest. 1988; 81: 1850 − 7.
- 82 Nitta Y, Abe K, Aoki M, Ohno I, Isoyama S. Diminished heat shock protein 70 mRNA induction in aged rat hearts after ischemia. Am. Physiol. Soc. 1994; 267: H1795 − 1803.
- 83
Boluyt MO,
Lakatta EG.
Cardiovascular aging in health. In: RA
Altschuld,
RA Haworth (Eds), Advances in Organ Biology.
JAI Press, London UK, 1998, pp. 257
−
304.
10.1016/S1569-2590(08)60094-4 Google Scholar
- 84 Helenius M, Hänninen M, Lehtinen SK, Salminen A. Aging-induced up-regulation of nuclear binding activities of oxidative stress responsive NfkB transcription factor in mouse cardiac muscle. J. Mol. Cell. Cardiol. 1996; 28: 487 − 98.DOI: 10.1006/jmcc.1996.0045
- 85 Lakatta EG, Gerstenblith G, Angell CS, Shock NW, Weisfeldt ML. Diminished inotropic response of aged myocardium to catecholamines. Circ. Res. 1975; 36: 262 − 9.