Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development
Alessandra Nejar Bruno
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorFelipe Klein Ricachenevsky
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorDaniela Pochmann
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorCarla Denise Bonan
Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
Search for more papers by this authorAna Maria Oliveira Battastini
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorMaria Luiza M. Barreto-Chaves
Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
Search for more papers by this authorCorresponding Author
João José Freitas Sarkis
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
*Corresponding author. Tel.: +55 51 3316 5554; fax: +55 51 3316 5535.
E-mail address:[email protected] (J.J.F. Sarkis)
Search for more papers by this authorAlessandra Nejar Bruno
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorFelipe Klein Ricachenevsky
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorDaniela Pochmann
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorCarla Denise Bonan
Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
Search for more papers by this authorAna Maria Oliveira Battastini
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorMaria Luiza M. Barreto-Chaves
Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
Search for more papers by this authorCorresponding Author
João José Freitas Sarkis
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
*Corresponding author. Tel.: +55 51 3316 5554; fax: +55 51 3316 5535.
E-mail address:[email protected] (J.J.F. Sarkis)
Search for more papers by this authorAbstract
The influence of the thyroid hormones on the normal function of the mammalian central nervous system depends on the brain region and on the developmental stage. Adenine nucleotides and their products also affect the brain function; ATP is an excitatory neurotransmitter, and adenosine has inhibitory effects on neurotransmission. Thus, this study aimed to evaluate the effects of hypothyroidism on the hydrolysis of ATP to adenosine in hippocampal and cortical synaptosomes and blood serum of rats during different phases of development. Rats aged 60 and 420 days old were divided into three groups: control, sham-operated and hypothyroid. Hypothyroidism was induced in these rats by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Neonatal hypothyroidism was induced by adding 0.02% methimazole in the drinking water from day 9 of gestation, and continually until 14 days old. Hypothyroidism increased the AMP hydrolysis in both hippocampus and cerebral cortex synaptosomes of rats in all aged tested. In blood serum, thyroid hormones deficiency increased the AMP hydrolysis in 14-day-old rats and the hydrolysis of ATP, ADP and AMP in 60-day-old rats; however, no alteration was observed in 420-day-old rats. Thus, our results suggest the involvement of the 5′-nucleotidase in synaptic function control in hypothyroidism throughout brain development.
References
- S. Amadio, N. D'Ambrosi, F. Cavaliere, B. Murra, G. Sancesario, G. Bernardi, G. Burnstock, C. Volonte. P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology. 42: 2002; 489–501
- G.W. Anderson. Thyroid hormones and the brain. Front. Neuroendocrinol. 22: 2001; 1–7
- A.M.O. Battasttini, J.B.T. Rocha, C.K. Barcellos, R.D. Dias, J.J.F. Sarkis. Characterization of an ATP diphosphohydrolase (EC 3.6.1.5.) in synaptosomes from cerebral cortex of adult rats. Neurochem. Res. 16: 1991; 1303–1310
- C.D. Bonan, M.M. Dias, A.M.O. Oliveira, R.D. Dias, J.J.F. Sarkis. Inhibitory avoidance learning inhibits ectonucleotidases activities in hippocampal synaptosomes of adult rats. Neurochem. Res. 23: 1998; 979–984
- M.M. Bradford. A rapid and sensitive method for the quntification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 1976; 218–254
- J.M. Brundege, T.V. Dunwiddie. Role of adenosine as a modulator of synaptic activity in the central nervous system. Ad. Pharmacol. 39: 1997; 353–391
- A.N. Bruno, C.D. Bonan, S.T. Wofchuk, J.J.F. Sarkis, A.M.O. Battastini. ATP diphosphohydrolase (NTPDase I) in rat hippocampal slices and effect of glutamate on enzyme activity in different phases of development. Life Sci. 71: 2002; 215–225
- A.N. Bruno, R.S. Da Silva, C.D. Bonan, A.M. Battastini, M.L. Barreto-Chaves, J.J.F. Sarkis. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int. J. Dev. Neurosci. 21: 2003; 401–408
- L. Calzà, L. Aloe, L. Giardinos. Thyroid hormone-induced plasticity in the adult rat brain. Brain Res. Bull. 44: 1997; 540–557
- K. Chan, D. Delfert, K.D. Junger. A direct colorimetric assay for Ca+2, -ATPase activity. Anal. Biochem. 157: 1986; 375–380
- T.V. Dunwiddie, L. Diao, W.R. Proctor. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J. Neurosci. 17: 1997; 7673–7682
- T.V. Dunwiddie, S.A. Masino. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24: 2001; 31–55
- J.H. Dussault, J. Ruel. Thyroid hormones and brain development. Annu. Rev. Physiol. 49: 1987; 321–334
- M.D. Fideu, A. Arce, A. Esquifino, M.T. Miras-Portugal. Thyroid hormones modulate both transport and A1 receptors in rat brain. Am. J. Physiol. 256: 1994; 1651–1656
- M.D. Fideu, M.T. Miras-Portugal. Long-term regulation of nucleoside transport by thyroid hormone (T3) in cultured chromaffin cells. Neurochem. Res. 17: 1992; 1099–1104
- S.E. Geel, T. Valcana, P.S. Timiras. Effect of neonatal hypothyroidism and of thyroxine on L-[14C] leucine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of rat. Brain Res. 4: 1967; 143–147
- D. Heymann, M. Reddington, G.W. Kreutzberg. Subcellular localization of 5′-nucleotidase in rat brain. J. Neurochem. 43: 1984; 971–978
- H. Honda, T. Iwata, T. Mochizuki, H. Kogo. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aorta. Gen. Pharmacol. 34: 2000; 429–434
- Y. Kawashima, T. Nagasawa, H. Ninomiya. Contribution of ecto-5′-nucleotidase to the inhibition of platelet aggregation by human endothelial cells. Blood. 96: 2000; 2157–2162
- S. Latini, F. Pedata. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem. 79: 2001; 463–484
- P.R. Lee, D. Brady, J.I. Koenig. Thyroid hormone regulation of N, -methyl-d, -aspartic acid receptor subunit mRNA expression in adult brain. J. Neuroendocrinol. 15(1): 2003; 87–92
10.1046/j.1365-2826.2003.00959.x Google Scholar
- H. Leitolf, J. Behrends, G. Brabant. The thyroid axis in ageing. Endrocr. Fac. Ageing. 242: 2002; 193–204
- A.J. Marcus, M.J. Broekman, J.H. Drosopoulos, N. Islam, T.N. Alyonycheva, L.B. Safier, K.A. Hajjar, D.N. Posnett, M.A. Schoenborn, K.A. Schooley, R.B. Gayle, C.R. Maliszewski. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J. Clin. Invest. 99: 1997; 1351–1360
- R. Masunaga, A. Nagasaka, A. Nakai, M. Kotake, Y. Sawai, N. Oda, T. Mokuno, K. Shimazaki, N. Hayakawa, R. Kato, E. Hirano, M. Hagiwara, H. Hidaka. Alteration of platelet aggregation in patients with thyroid disorders. Metabolic. 46: 1997; 1128–1131
- D. Mazurkiewicz, D. Saggerson. Changes in the activities of adenosine-metabolizing enzymes in six regions of the rat brain on chemical induction of hypothyroidism. Biochem. J. 261: 1989; 667–672
- J. Muller, J.B.T. Rocha, A.M.O. Battastini, J.J.F. Sarkis, R.D. Dias. Ontogeny of ATP and ADP hydrolysis by cerebral cortex synaptosomes from rats. Br. J. Med. Biol. Res. 23(10): 1990; 935–939
- A.K. Nagy, A.V. Delgado-Escueta. Rapid preparation of synaptosomes from mammalian brain using a non toxic isoosmotic gradient (Percoll). J. Neurochem. 43: 1984; 1114–1123
- J.J. Ohisalo, J.E. Stouffer. Adenosine, thyroid status and regulation of lipolysis. J. Biochem. 174: 1979; 111–113
- J.H. Oppenheimer, H.L. Schwartz. Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev. 18: 1997; 462–475
- J.P. Oses, C.M. Cardoso, R.A. Germano, I.B. Kirst, B. Rucker, C.R. Furstenau, M.R. Wink, C.D. Bonan, A.M.O. Battastini, J.J.F. Sarkis. Soluble NTPDase: an additional system of nucleotide hydrolysis in rat blood serum. Life Sci. 74(26): 2004; 3275–3284
- C. Pipaón, A. Santos, A. Pérez-Castilho. Thyroid hormone up-regulates NGFI-A gene expression in rat brain during development. J. Biol. Chem. 267: 1992; 21–23
- R.N. Puri, R.W. Colman. ADP-induced platelet activation. Crit. Ver. Biochem. Mol. Biol. 32: 1997; 437–502
- V. Ralevic, G. Burnstock. Involvement of purinergic signaling in cardiovascular diseases. Drugs News Perspect. 16(13): 2003; 133–140
- S.A. Rivkees, Z. Zhao, G. Porter, C. Turner. Influences of adenosine on the fetus and newborn. Mol. Gen. Metabol. 74: 2001; 160–171
- G.A. Rongen, J.S. Floras, J.W. Lenders, T. Thien, P. Smits. Cardiovascular pharmacology of purines. Clin. Sci. (London). 92(1): 1997; 13–24
- R.J. Salin-Pascual, M. Franco, R. Garcia-Ferreiro, J. Vazquez, J. Suarez, L. Sanchez, A. Jimenez-Anguiano. Differences in sleep variables, blood adenosine, and body temperature between hypothyroid and euthyroid rats before and after REM sleep deprivation. Sleep. 20(11): 1997; 957–962
- A. Shuaib, S. Ijaz, S. Hemmings, P. Galazka, R. Ishaqzay, L. Liu, J. Ravindran, H. Miyashita. Decreased glutamate release during hypothyroidism may contribute to protection in cerebral ischemia. Exp. Neurol. 128(2): 1994; 260–265
- T.A. Slotkin, R.J. Slepetis. Obligatory role of thyroid hormones in development of peripheral sympathetic and central nervous system catecholaminergic neurons: effects of propylthiouracil-induced hypothyroidism on transmitter levels, turnover and release. J. Pharmacol. Exp. Ther. 230: 1984; 53–61
- R.M. Smith, A.J. Patel, A.E. Kingsbury, A. Hunt, R. Balázs. Effects of thyroid state on brain development: β-adrenergic receptors and 5′-nucleotidase activity. Brain Res. 198: 1980; 375–387
- J.W. Smith, A.T. Evans, B. Costall, J.W. Smythe. Thyroid hormones, brain function and cognition: a brief review. Neurosci. Behav. Rev. 26: 2002; 45–60
- G. Soslau, D. Youngprapakorn. A possible dual physiological role of extracellular ATP in the modulation of platelet aggregation. Biochim. Biophys. Acta. 1355: 1997; 131–140
- B. Sperlágh, G. Zsilla, M. Baranyi, A. Kékes-Szabó, E. Sylvester Vizi. Age-dependent changes of presynaptic neuromodulation via A1, -adenosine receptors in rat hippocampal slices. Int. J. Dev. Neurosci. 15: 1997; 739–747
- L.D. Todorov, S. Mihaylova-Todorova, T.D. Westfall, P. Sneddon, C. Kennedy, R.A. Bjur, D.P. Westfall. Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature. 387: 1997; 76–79
- C.P. Turner, H. Yan, M. Schwartz, T. Othman, S.A. Rivkees. A1 adenosine receptor activation induces ventriculomegaly and white matter loss. Dev. Neurosci. 13: 2002; 1199–1204
- D.R. Weaver. A1, -adenosine receptor gene expression in fetal rat brain. Dev. Brain Res. 9: 1996; 205–233
- M.R. Wink, A.S. Tamajusuku, E. Braganhol, E.A. Casali, M.L. Barreto-Chaves, J.J. Sarkis, A.M.O. Battastini. Thyroid hormone upregulates ecto-5′-nucleotidase/CD73 in C6 rat glioma cells. Mol. Cell. Endocrinol. 205: 2003; 107–114
10.1016/S0303-7207(03)00197-7 Google Scholar
- G. Yegutkin, P. Bodin, G. Burnstock. Effect of shear stress on the soluble ecto-enzymes ATPase and 5′-nucleotidase along with endogenous ATP from vascular endothelial cells. Br. J. Pharmacol. 129: 2000; 921–926
- H. Zimmermann. Biochemistry, localization and functional role of ecto-nucleotidases in the nervous system. Prog. Neurobiol. 49: 1996; 589–618