Type III secretion: The bacteria-eukaryotic cell express
Luís Jaime Mota
Biozentrum der Universitåt Basel, Biozentrum, Klingelbergstrasse, 50-70 CH4051 Basel, Switzerland
Imperial College London, Centre for Molecular Microbiology and Infection, Armstrong Road, Flowers Building, London SW7 2AZ, United Kingdom.
Search for more papers by this authorIsabel Sorg
Biozentrum der Universitåt Basel, Biozentrum, Klingelbergstrasse, 50-70 CH4051 Basel, Switzerland
Search for more papers by this authorCorresponding Author
Guy R. Cornelis
Biozentrum der Universitåt Basel, Biozentrum, Klingelbergstrasse, 50-70 CH4051 Basel, Switzerland
*Corresponding author. Tel.: + 41 61 267 2121; fax: +41 61 267 2118., E-mail address: [email protected]Search for more papers by this authorLuís Jaime Mota
Biozentrum der Universitåt Basel, Biozentrum, Klingelbergstrasse, 50-70 CH4051 Basel, Switzerland
Imperial College London, Centre for Molecular Microbiology and Infection, Armstrong Road, Flowers Building, London SW7 2AZ, United Kingdom.
Search for more papers by this authorIsabel Sorg
Biozentrum der Universitåt Basel, Biozentrum, Klingelbergstrasse, 50-70 CH4051 Basel, Switzerland
Search for more papers by this authorCorresponding Author
Guy R. Cornelis
Biozentrum der Universitåt Basel, Biozentrum, Klingelbergstrasse, 50-70 CH4051 Basel, Switzerland
*Corresponding author. Tel.: + 41 61 267 2121; fax: +41 61 267 2118., E-mail address: [email protected]Search for more papers by this authorEdited by I. Henderson
Abstract
Type III secretion (T3S) is an export pathway used by Gram-negative pathogenic bacteria to inject bacterial proteins into the cytosol of eukaryotic host cells. This pathway is characterized by (i) a secretion nanomachine related to the bacterial flagellum, but usually topped by a stiff needle-like structure; (ii) the assembly in the eukaryotic cell membrane of a translocation pore formed by T3S substrates; (iii) a non-cleavable N-terminal secretion signal; (iv) T3S chaperones, assisting the secretion of some substrates; (v) a control mechanism ensuring protein delivery at the right place and time. Here, we review these different aspects focusing in open questions that promise exciting findings in the near future.
References
- [1] Kubori, T., Matsushima, Y., Nakamura, D. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605.
- [2] Tamano, K., Aizawa, S., Katayama, E. (2000) Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887.
- [3] Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C., Abe, A. (2001) Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98, 11638–11643.
- [4] Marlovits, T.C., Kubori, T., Sukhan, A., Thomas, D.R., Galan, J.E., Unger, V.M. (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042.
- [5] Daniell, S.J., Takahashi, N., Wilson, R. (2001) The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol. 3, 865–871.
- [6] Jin, Q., He, S.Y. (2001) Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294, 2556–2558.
- [7] Kubori, T., Sukhan, A., Aizawa, S.I., Galan, J.E. (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97, 10225–10230.
- [8]
Blocker, A.,
Jouihri, N.,
Larquet, E. (2001) Structure and composition of the Shigella flexneri needle complex, a part of its type III secretion.
Mol. Microbiol.
39, 652–663.
10.1046/j.1365-2958.2001.02200.x Google Scholar
- [9] Koster, M., Bitter, W., de Cock, H., Alloui, A., Cornelis, G.R., Tommassen, J. (1997) The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol. 26, 789–798.
- [10] Hoiczyk, E., Blobel, G. (2001) Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl. Acad. Sci. USA 98, 4669–4674.
- [11] Journet, L., Agrain, C., Broz, P., Cornelis, G.R. (2003) The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 1757–1760.
- [12] Tamano, K., Katayama, E., Toyotome, T., Sasakawa, C. (2002) Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184, 1244–1252.
- [13] Mota, L.J., Journet, L., Sorg, I., Agrain, C., Cornelis, G.R. Bacterial injectisomes: needle length does matter. Science. 307, (2005) 1278
- [14] West, N.P., Sansonetti, P., Mounier, J. (2005) Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317.
- [15] Edqvist, P., Olsson, J., Lavander, M., Sundberg, L., Forsberg, A., Wolf-Watz, H., Lloyd, S.A. (2003) YscP and YscU regulate substrate specificity of the Yersinia Type III secretion system. J. Bacteriol. 185, 2259–2266.
- [16] Agrain, C., Callebaut, I., Journet, L., Sorg, I., Paroz, C., Mota, L.J., Cornelis, G.R. (2005) Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol. Microbiol. 56, 54–67.
- [17] Rosqvist, R., Magnusson, K.E., Wolf-Watz, H. (1994) Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13, 964–972.
- [18] Sory, M.P., Cornelis, G.R. (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14, 583–594.
- [19] Hakansson, S., Schesser, K., Persson, C., Galyov, E.E., Rosqvist, R., Homble, F., Wolf-Watz, H. (1996) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15, 5812–5823.
- [20] Pettersson, J., Holmstrom, A., Hill, J. (1999) The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol. Microbiol. 32, 961–976.
- [21] Boland, A., Sory, M.P., Iriarte, M., Kerbourch, C., Wattiau, P., Cornelis, G.R. (1996) Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y.enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus. EMBO J. 15, 5191–5201.
- [22] Goure, J., Broz, P., Attree, O., Cornelis, G.R., Attree, I. (2005) Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J. Infect. Dis. 192, 218–225.
- [23] Neyt, C., Cornelis, G.R. (1999) Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol. 33, 971–981.
- [24] Holmstrom, A., Olsson, J., Cherepanov, P. (2001) LcrV is a channel size-determining component of the Yop effector translocon of Yersinia. Mol. Microbiol. 39, 620–632.
- [25] Goure, J., Pastor, A., Faudry, E., Chabert, J., Dessen, A., Attree, I. (2004) The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect. Immun. 72, 4741–4750.
- [26] Blocker, A., Gounon, P., Larquet, E., Niebuhr, K., Cabiaux, V., Parsot, C., Sansonetti, P. (1999) The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693.
- [27] Picking, W.L., Nishioka, H., Hearn, P.D., Baxter, M.A., Harrington, A.T., Blocker, A., Picking, W.D. (2005) IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun. 73, 1432–1440.
- [28] Warawa, J., Finlay, B.B., Kenny, B. (1999) Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect. Immun. 67, 5538–5540.
- [29] Hartland, E.L., Daniell, S.J., Delahay, R.M. (2000) The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions. Mol. Microbiol. 35, 1483–1492.
- [30] Michiels, T., Wattiau, P., Brasseur, R., Ruysschaert, J.M., Cornelis, G. (1990) Secretion of Yop proteins by Yersiniae. Infect. Immun. 58, 2840–2849.
- [31] Anderson, D.M., Schneewind, O. (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278, 1140–1143.
- [32] Sory, M.P., Boland, A., Lambermont, I., Cornelis, G.R. (1995) Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc. Natl. Acad. Sci. USA 92, 11998–12002.
- [33] Lloyd, S.A., Norman, M., Rosqvist, R., Wolf-Watz, H. (2001) Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol. Microbiol. 39, 520–531.
- [34] Page, A.L., Sansonetti, P., Parsot, C. (2002) Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43, 1533–1542.
- [35] Ramamurthi, K.S., Schneewind, O. (2005) A synonymous mutation in Yersinia enterocolitica yopE affects the function of the YopE Type III secretion signal. J. Bacteriol. 187, 707–715.
- [36] Wattiau, P., Cornelis, G.R. (1993) SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol. Microbiol. 8, 123–131.
- [37] Boyd, A.P., Lambermont, I., Cornelis, G.R. (2000) Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol. 182, 4811–4821.
- [38] Krall, R., Zhang, Y., Barbieri, J.T. (2004) Intracellular membrane localization of Pseudomonas ExoS and Yersinia YopE in mammalian cells. J. Biol. Chem. 279, 2747–2753.
- [39] Cheng, L.W., Anderson, D.M., Schneewind, O. (1997) Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol. Microbiol. 24, 757–765.
- [40] Lee, S.H., Galán, J.E. (2004) Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483–495.
- [41] Birtalan, S.C., Phillips, R.M., Ghosh, P. (2002) Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell 9, 971–980.
- [42] Luo, Y., Bertero, M.G., Frey, E.A. (2001) Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8, 1031–1036.
- [43] Feldman, M.F., Muller, S., Wuest, E., Cornelis, G.R. (2002) SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system. Mol. Microbiol. 46, 1183–1197.
- [44] Neyt, C., Cornelis, G.R. (1999) Role of SycD, the chaperone of the Yersinia translocators YopB and YopD. Mol. Microbiol. 31, 143–156.
- [45] Menard, R., Sansonetti, P., Parsot, C., Vasselon, T. (1994) Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79, 515–525.
- [46] Menard, R., Sansonetti, P., Parsot, C. (1994) The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J. 13, 5293–5302.
- [47] Pettersson, J., Nordfelth, R., Dubinina, E., Bergman, T., Gustafsson, M., Magnusson, K.E., Wolf-Watz, H. (1996) Modulation of virulence factor expression by pathogen target cell contact. Science 273, 1231–1233.
- [48] Forsberg, A., Viitanen, A.M., Skurnik, M., Wolf-Watz, H. (1991) The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol. Microbiol. 5, 977–986.
- [49] Day, J.B., Plano, G.V. (1998) A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol. 30, 777–788.
- [50] Iriarte, M., Sory, M.P., Boland, A., Boyd, A.P., Mills, S.D., Lambermont, I., Cornelis, G.R. (1998) TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO J. 17, 1907–1918.
- [51] Skryzpek, E., Straley, S.C. (1993) LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J. Bacteriol. 175, 3520–3528.
- [52] Schubot, F.D., Jackson, M.W., Penrose, K.J., Cherry, S., Tropea, J.E., Plano, G.V., Waugh, D.S. (2005) Three-dimensional structure of a macromolecular assembly that regulates Type III secretion in Yersinia pestis. J. Mol. Biol. 346, 1147–1161.
- [53] Nilles, M.L., Williams, A.W., Skrzypek, E., Straley, S.C. (1997) Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J. Bacteriol. 179, 1307–1316.
- [54] van der Goot, F.G., Tran Van Nhieu, G., Allaoui, A., Sansonetti, P.J., Lafont, F. (2004) Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J. Biol. Chem. 279, 47792–47798.
- [55] Hayward, R.D., Cain, R.J., McGhie, E.J., Phillips, N., Garner, M.J., Koronakis, V. (2005) Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol. 56, 590–603.
- [56] Stainier, I., Iriarte, M., Cornelis, G.R. (1997) YscM1 and YscM2, two Yersinia enterocolitica proteins causing down regulation of yop transcription. Mol. Microbiol. 26, 833–843.
- [57] Darwin, K.H., Miller, V.L. (2001) Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J. 20, 1850–1862.
- [58] Mavris, M., Page, A.L., Tournebize, R., Demers, B., Sansonetti, P., Parsot, C. (2002) Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43, 1543–1553.
- [59] Francis, M.S., Lloyd, S.A., Wolf-Watz, H. (2001) The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol. Microbiol. 42, 1075–1093.