Stromal cell derived factor 1 plasmid to regenerate the anal sphincters
Li Sun
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Search for more papers by this authorAlanna Billups
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Search for more papers by this authorAnna Rietsch
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Search for more papers by this authorMargot S. Damaser
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, Ohio, USA
Search for more papers by this authorCorresponding Author
Massarat Zutshi
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
Correspondence
Massarat Zutshi, Department of Colorectal Surgery, Cleveland Clinic, 9500 Euclid Avenue A30, Cleveland, OH 44195, USA.
Email: [email protected]
Search for more papers by this authorLi Sun
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Search for more papers by this authorAlanna Billups
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Search for more papers by this authorAnna Rietsch
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Search for more papers by this authorMargot S. Damaser
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, Ohio, USA
Search for more papers by this authorCorresponding Author
Massarat Zutshi
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
Correspondence
Massarat Zutshi, Department of Colorectal Surgery, Cleveland Clinic, 9500 Euclid Avenue A30, Cleveland, OH 44195, USA.
Email: [email protected]
Search for more papers by this authorAbstract
The aim of this study was to evaluate regeneration of a chronic large anal sphincter defect in a pig model after treatment with a plasmid encoding Stromal Cell Derived Factor-1(SDF-1).
Methods
Under ethics approved protocol 19 age/weight matched Sinclair mini-pigs were subjected to excision of the posterior 50% of anal sphincter muscle and left to recover for 6 weeks. They were randomly allocated to receive either saline treatment (Saline 1 ml, n = 5), 1 injection of SDF-1 plasmid 2 mg/ml (1 SDF-1, n = 9) or 2 injections of SDF-1, 2 mg/ml each at 2 weeks intervals (2 SDF-1, n = 5). Euthanasia occurred 8 weeks after the last treatment. In vivo outcomes included anal resting pressures done under anesthesia pre-injury, pre-injection and before euthanasia (8 weeks after treatment). Anal ultrasound was done pre injury and pre-euthanasia. Tissues were saved for histology and analyzed quantitatively. Two way ANOVA followed by Holm-Sidak test and one way ANOVA followed by the Tukey test were used for data analysis, p < 0.05 was regarded as significant.
Results
Posterior anal pressures at the 3 time points were not significantly different in the saline group. In contrast, post-treatment pressures in the 1 SDF-1 group pressures were significantly higher than both pre-injury (p = 0.001) and pre-treatment time points (p = 0.003). At the post-treatment time point, both 1 SDF-1 (p = 0.01) and 2 SDF-1 (p = 0.01) groups had significantly higher mean pressures compared to the saline group. Histology showed distortion of normal anatomy with patchy regeneration in the control group while muscle was more organized in both treatment groups.
Conclusions
Eight weeks after a single or two doses of SDF-1injected into a chronic anal sphincter injury improved resting anal pressures and regenerated muscle in the entire defect. SDF-1 plasmid is effective in treating chronic defects of the anal sphincter in a large animal and could be clinically translated.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abreu, P., Mendes, S. V., Ceccatto, V. M., & Hirabara, S. M. (2017). Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents. Life Sciences, 170, 33–40. https://doi.org/10.1016/j.lfs.2016.11.016
- Aghaee-Afshar, M., Rezazadehkermani, M., Asadi, A., Malekpour-Afshar, R., Shahesmaeili, A., & Nematollahi-mahani, S. N. (2009). Potential of human umbilical cord matrix and rabbit bone marrow-derived mesenchymal stem cells in repair of surgically incised rabbit external anal sphincter. Diseases of the Colon & Rectum, 52(10), 1753–1761. https://doi.org/10.1007/DCR.0b013e3181b55112
- Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. Journal of Experimental Medicine, 185(1), 111–120. https://doi.org/10.1084/jem.185.1.111
- Bianchi, M. E., & Mezzapelle, R. (2020). The chemokine receptor CXCR4 in cell proliferation and tissue Regeneration. Frontiers in Immunology, 11, 2109. https://doi.org/10.3389/fimmu.2020.02109
- Bisson, A., Freret, M., Drouot, L., Jean, L., Le Corre, S., Gourcerol, G., Doucet, C., Michot, F., Boyer, O., & Lamacz, M. (2015). Restoration of anal sphincter function after myoblast cell therapy in incontinent rats. Cell Transplantation, 24(2), 277–286. https://doi.org/10.3727/096368913X674053
- Bobadilla, M., Sainz, N., Abizanda, G., Orbe, J., Rodriguez, J. A., Páramo, J. A., Prósper, F., & Pérez-Ruiz, A. (2014). The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem Cells and Development, 23(12), 1417–1427. https://doi.org/10.1089/scd.2013.0491
- Bohl, J. L., Zakhem, E., & Bitar, K. N. (2017). Successful treatment of passive fecal incontinence in an animal model using engineered biosphincters: A 3-month follow-up study. Stem Cells Transl Med, 6(9), 1795–1802. https://doi.org/10.1002/sctm.16-0458
- Boyer, O., Bridoux, V., Giverne, C., Bisson, A., Koning, E., Leroi, A. M., Chambon, P., Déhayes, J., Le Corre, S., Jacquot, S., Bastit, D., Martinet, J., Houivet, E., Tuech, J.-J., Benichou, J., & Michot, F. (2018). Autologous myoblasts for the treatment of fecal incontinence: Results of a phase 2 Randomized placebo-controlled study (MIAS). Annals of Surgery, 267(3), 443–450. https://doi.org/10.1097/SLA.0000000000002268
- Brzoska, E., Kowalewska, M., Markowska-Zagrajek, A., Kowalski, K., Archacka, K., Zimowska, M., Grabowska, I., Czerwińska, A. M., Czarnecka-Góra, M., Stremińska, W., Jańczyk-Ilach, K., & Ciemerych, M. A. (2012). Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biology of the Cell, 104(12), 722–737. https://doi.org/10.1111/boc.201200022
- Chung, E. S., Miller, L., Patel, A. N., Anderson, R. D., Mendelsohn, F. O., Traverse, J., Silver, K. H., Shin, J., Ewald, G., Farr, M. J., Anwaruddin, S., Plat, F., Fisher, S. J., AuWerter, A. T., Pastore, J. M., Aras, R., & Penn, M. S. (2015). Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: The STOP-HF randomized phase II trial. European Heart Journal, 36(33), 2228–2238. https://doi.org/10.1093/eurheartj/ehv254
- Dong, F., Harvey, J., Finan, A., Weber, K., Agarwal, U., & Penn, M. S. (2012). Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation, 126(3), 314–324. https://doi.org/10.1161/CIRCULATIONAHA.111.082453
- Fitzwater, J. L., Grande, K. B., Sailors, J. L., Acevedo, J. F., Word, R. A., & Wai, C. Y. (2015). Effect of myogenic stem cells on the integrity and histomorphology of repaired transected external anal sphincter. International Urogynecology Journal, 26(2), 251–256. https://doi.org/10.1007/s00192-014-2496-5
- Frudinger, A., Kolle, D., Schwaiger, W., Pfeifer, J., Paede, J., & Halligan, S. (2010). Muscle-derived cell injection to treat anal incontinence due to obstetric trauma: Pilot study with 1 year follow-up. Gut, 59(1), 55–61. https://doi.org/10.1136/gut.2009.181347
- Frudinger, A., Marksteiner, R., Pfeifer, J., Margreiter, E., Paede, J., & Thurner, M. (2018). Skeletal muscle-derived cell implantation for the treatment of sphincter-related faecal incontinence. Stem Cell Research & Therapy, 9(1), 233. https://doi.org/10.1186/s13287-018-0978-y
- Frudinger, A., Pfeifer, J., Paede, J., Kolovetsiou-Kreiner, V., Marksteiner, R., & Halligan, S. (2015). Autologous skeletal-muscle-derived cell injection for anal incontinence due to obstetric trauma: A 5-year follow-up of an initial study of 10 patients. Colorectal Disease, 17(9), 794–801. https://doi.org/10.1111/codi.12947
- Gras, S., Tolstrup, C. K., & Lose, G. (2017). Regenerative medicine provides alternative strategies for the treatment of anal incontinence. Int Urogynecol J, 28(3), 341–350. https://doi.org/10.1007/s00192-016-3064-y
- Hundepool, C. A., Nijhuis, T. H. J., Rbia, N., Bulstra, L. F., Selles, R. W., & Hovius, S. E. R. (2015). Noninvasive ultrasound of the tibial muscle for longitudinal analysis of nerve Regeneration in Rats. Plastic and Reconstructive Surgery, 136(5), 633e–639e. https://doi.org/10.1097/PRS.0000000000001681
- Kang, S. B., Lee, H. N., Lee, J. Y., Park, J. S., Lee, H. S., & Lee, J. Y. (2008). Sphincter contractility after muscle-derived stem cells autograft into the cryoinjured anal sphincters of rats. Diseases of the Colon & Rectum, 51(9), 1367–1373. https://doi.org/10.1007/s10350-008-9360-y
- Khalifa, A. O., Kavran, M., Mahran, A., Isali, I., Woda, J., Flask, C. A., Penn, M. S., & Hijaz, A. K. (2020). Stromal derived factor-1 plasmid as a novel injection for treatment of stress urinary incontinence in a rat model. International Urogynecology Journal, 31(1), 107–115. https://doi.org/10.1007/s00192-019-03867-3
- Kuismanen, K., Juntunen, M., Narra Girish, N., Tuominen, H., Huhtala, H., Nieminen, K., Hyttinen, J., & Miettinen, S. (2018). Functional outcome of human adipose stem cell injections in Rat anal sphincter acute injury model. STEM CELLS Translational Medicine, 7(3), 295–304. https://doi.org/10.1002/sctm.17-0208
- Lorenzi, B., Pessina, F., Lorenzoni, P., Urbani, S., Vernillo, R., Sgaragli, G., Gerli, R., Mazzanti, B., Bosi, A., Saccardi, R., & Lorenzi, M. (2008). Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Diseases of the Colon & Rectum, 51(4), 411–420. https://doi.org/10.1007/s10350-007-9153-8
- Mazzanti, B., Lorenzi, B., Borghini, A., Boieri, M., Ballerini, L., Saccardi, R., Weber, E., & Pessina, F. (2016). Local injection of bone marrow progenitor cells for the treatment of anal sphincter injury: In-vitro expanded versus minimally-manipulated cells. Stem Cell Research & Therapy, 7(1), 85. https://doi.org/10.1186/s13287-016-0344-x
- Miyasaka, E. A., Raghavan, S., Gilmont, R. R., Mittal, K., Somara, S., Bitar, K. N., & Teitelbaum, D. H. (2011). In vivo growth of a bioengineered internal anal sphincter: Comparison of growth factors for optimization of growth and survival. Pediatric Surgery International, 27(2), 137–143. https://doi.org/10.1007/s00383-010-2786-z
- Montoya, T. I., Acevedo, J. F., Smith, B., Keller, P. W., Sailors, J. L., Tang, L., Word, R. A., & Wai, C. Y. (2015). Myogenic stem cell-laden hydrogel scaffold in wound healing of the disrupted external anal sphincter. International Urogynecology Journal, 26(6), 893–904. https://doi.org/10.1007/s00192-014-2620-6
- Oh, H. K., Lee, H. S., Lee, J. H., Oh, S. H., Lim, J. Y., Ahn, S., Hwang, J.-Y., & Kang, S.-B. (2015). Functional and histological evidence for the targeted therapy using biocompatible polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence. Diseases of the Colon & Rectum, 58(5), 517–525. https://doi.org/10.1097/DCR.0000000000000346
- Oh, H. K., Lee, H. S., Lee, J. H., Oh, S. H., Lim, J. Y., Ahn, S., & Kang, S. B. (2015). Coadministration of basic fibroblast growth factor-loaded polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence. International Journal of Colorectal Disease, 30(4), 549–557. https://doi.org/10.1007/s00384-015-2121-1
- Pathi, S. D., Acevedo, J. F., Keller, P. W., Kishore, A. H., Miller, R. T., Wai, C. Y., & Word, R. A. (2012). Recovery of the injured external anal sphincter after injection of local or intravenous mesenchymal stem cells. Obstetrics & Gynecology, 119(1), 134–144. https://doi.org/10.1097/AOG.0b013e3182397009
- Penn, M. S., Pastore, J., Miller, T., & Aras, R. (2012). SDF-1 in myocardial repair. Gene Therapy, 19(6), 583–587. https://doi.org/10.1038/gt.2012.32
- Plumb, D. C. (2011). Plumb's veterinary drug handbook ( 7th ed., p. 762). PharmaVet Inc.
- Raghavan, S., Gilmont, R. R., Miyasaka, E. A., Somara, S., Srinivasan, S., Teitelbaum, D. H., & Bitar, K. N. (2011). Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology, 141(1), 310–319. https://doi.org/10.1053/j.gastro.2011.03.056
- Raghavan, S., Miyasaka, E. A., Gilmont, R. R., Somara, S., Teitelbaum, D. H., & Bitar, K. N. (2014). Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells. Surgery, 155(4), 668–674. https://doi.org/10.1016/j.surg.2013.12.023
- Raghavan, S., Miyasaka, E. A., Hashish, M., Somara, S., Gilmont, R. R., Teitelbaum, D. H., & Bitar, K. N. (2010). Successful implantation of physiologically functional bioengineered mouse internal anal sphincter. American Journal of Physiology - Gastrointestinal and Liver Physiology, 299(2), G430–G439. https://doi.org/10.1152/ajpgi.00269.2009
- Rajabi, S., Jalili-Firoozinezhad, S., Ashtiani, M. K., Le Carrou, G., Tajbakhsh, S., & Baharvand, H. (2018). Effect of chemical immobilization of SDF-1alpha into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e438–e450. https://doi.org/10.1002/term.2479
- Rantanen, J., Thorsson, O., Wollmer, P., Hurme, T., & Kalimo, H. (1999). Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. The American Journal of Sports Medicine, 27(1), 54–59. https://doi.org/10.1177/03635465990270011701
- Ridiandries, A., Tan, J. T. M., & Bursill, C. A. (2018). The Role of chemokines in wound healing. International Journal of Molecular Sciences, 19(10), 3217. https://doi.org/10.3390/ijms19103217
- Romaniszyn, M., Rozwadowska, N., Malcher, A., Kolanowski, T., Walega, P., & Kurpisz, M. (2015). Implantation of autologous muscle-derived stem cells in treatment of fecal incontinence: Results of an experimental pilot study. Techniques in Coloproctology, 19(11), 685–696. https://doi.org/10.1007/s10151-015-1351-0
- Salcedo, L., Penn, M., Damaser, M., Balog, B., & Zutshi, M. (2014). Functional outcome after anal sphincter injury and treatment with mesenchymal stem cells. Stem Cells Transl Med, 3(6), 760–767. https://doi.org/10.5966/sctm.2013-0157
- Salcedo, L., Sopko, N., Jiang, H. H., Damaser, M., Penn, M., & Zutshi, M. (2011). Chemokine upregulation in response to anal sphincter and pudendal nerve injury: Potential signals for stem cell homing [Research support, non-U.S. Gov't]. International Journal of Colorectal Disease, 26(12), 1577–1581. https://doi.org/10.1007/s00384-011-1269-6
- Sarveazad, A., Newstead, G. L., Mirzaei, R., Joghataei, M. T., Bakhtiari, M., Babahajian, A., & Mahjoubi, B. (2017). A new method for treating fecal incontinence by implanting stem cells derived from human adipose tissue: Preliminary findings of a randomized double-blind clinical trial. Stem Cell Research & Therapy, 8(1), 40. https://doi.org/10.1186/s13287-017-0489-2
- Shen, L., Gao, Y., Qian, J., Sun, A., & Ge, J. (2011). A novel mechanism for endothelial progenitor cells homing: The SDF-1/CXCR4-Rac pathway may regulate endothelial progenitor cells homing through cellular polarization. Medical Hypotheses, 76(2), 256–258. https://doi.org/10.1016/j.mehy.2010.10.014
- Shinohara, K., Greenfield, S., Pan, H., Vasanji, A., Kumagai, K., Midura, R. J., Kiedrowski, M., Penn, M. S., & Muschler, G. F. (2011). Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair. Journal of Orthopaedic Research, 29(7), 1064–1069. https://doi.org/10.1002/jor.21374
- Shishehbor, M. H., Rundback, J., Bunte, M., Hammad, T. A., Miller, L., Patel, P. D., Sadanandan, S., Fitzgerald, M., Pastore, J., Kashyap, V., & Henry, T. D. (2019). SDF-1 plasmid treatment for patients with peripheral artery disease (STOP-PAD): Randomized, double-blind, placebo-controlled clinical trial. Vascular Medicine, 24(3), 200–207. https://doi.org/10.1177/1358863X18817610
- Sun, L., Kuang, M., Penn, M., Damaser, M. S., & Zutshi, M. (2017). Stromal cell-derived factor 1 plasmid Regenerates both smooth and skeletal muscle after anal sphincter injury in the long term. Diseases of the Colon & Rectum, 60(12), 1320–1328. https://doi.org/10.1097/DCR.0000000000000940
- Sun, L., Xie, Z., Kuang, M., Penn, M., Damaser, M. S., & Zutshi, M. (2017). Regenerating the anal sphincter: Cytokines, stem cells, or both? Diseases of the Colon & Rectum, 60(4), 416–425. https://doi.org/10.1097/DCR.0000000000000783
- Sun, L., Yeh, J., Xie, Z., Kuang, M., Damaser, M. S., & Zutshi, M. (2016). Electrical stimulation followed by mesenchymal stem cells improves anal sphincter anatomy and function in a Rat model at a time Remote from injury. Diseases of the Colon & Rectum, 59(5), 434–442. https://doi.org/10.1097/DCR.0000000000000548
- Sundararaman, S., Miller, T. J., Pastore, J. M., Kiedrowski, M., Aras, R., & Penn, M. S. (2011). Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Therapy, 18(9), 867–873. https://doi.org/10.1038/gt.2011.18
- Thurner, M., Deutsch, M., Janke, K., Messner, F., Kreutzer, C., Beyl, S., Couillard-Després, S., Hering, S., Troppmair, J., & Marksteiner, R. (2020). Generation of myogenic progenitor cell-derived smooth muscle cells for sphincter regeneration. Stem Cell Research & Therapy, 11(1), 233. https://doi.org/10.1186/s13287-020-01749-w
- Tran, K., Kuo, B., Zibaitis, A., Bhattacharya, S., Cote, C., & Belkind-Gerson, J. (2014). Effect of propofol on anal sphincter pressure during anorectal manometry. Journal of Pediatric Gastroenterology and Nutrition, 58(4), 495–497. https://doi.org/10.1097/MPG.0000000000000190
- Trebol, J., Carabias-Orgaz, A., Garcia-Arranz, M., & Garcia-Olmo, D. (2018). Stem cell therapy for faecal incontinence: Current state and future perspectives. World Journal of Stem Cells, 10(7), 82–105. https://doi.org/10.4252/wjsc.v10.i7.82
- Volckaert, T., & De Langhe, S. (2014). Lung epithelial stem cells and their niches: Fgf10 takes center stage. Fibrogenesis & Tissue Repair, 7, 8. https://doi.org/10.1186/1755-1536-7-8
- White, A. B., Keller, P. W., Acevedo, J. F., Word, R. A., & Wai, C. Y. (2010). Effect of myogenic stem cells on contractile properties of the repaired and unrepaired transected external anal sphincter in an animal model. Obstetrics & Gynecology, 115(4), 815–823. https://doi.org/10.1097/AOG.0b013e3181d56cc5
- Zakhem, E., Elbahrawy, M., Orlando, G., & Bitar, K. N. (2015). Successful implantation of an engineered tubular neuromuscular tissue composed of human cells and chitosan scaffold. Surgery, 158(6), 1598–1608. https://doi.org/10.1016/j.surg.2015.05.009