Regenerative benefits of using growth factors in treatment of periodontal defects: A systematic review and meta-analysis with Trial Sequential Analysis on preclinical studies
Zeinab Farimani
Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
Search for more papers by this authorAhmad Reza Shamshiri
Department of Community Oral Health, School of Dentistry, Research Center for Caries Prevention, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorHoori Asl roosta
Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorCorresponding Author
Solmaz Akbari
Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
Correspondence
Solmaz Akbari, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Mahboubeh Bohlouli, Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Mahboubeh Bohlouli
Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Correspondence
Solmaz Akbari, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Mahboubeh Bohlouli, Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorZeinab Farimani
Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
Search for more papers by this authorAhmad Reza Shamshiri
Department of Community Oral Health, School of Dentistry, Research Center for Caries Prevention, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorHoori Asl roosta
Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorCorresponding Author
Solmaz Akbari
Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
Correspondence
Solmaz Akbari, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Mahboubeh Bohlouli, Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Mahboubeh Bohlouli
Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Correspondence
Solmaz Akbari, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Mahboubeh Bohlouli, Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
The ultimate goal in periodontal treatments is to achieve a functional and anatomical regeneration of the lost tissues. Numerous studies have in some way illustrated the beneficial effects of biologic modifiers in this process, yet they are subject to a rather large degree of diversity in their results. Thanks to the promising outcomes of bioengineering techniques in the field of periodontal regeneration, this systematic review aims to evaluate the effect of various biologic modifiers used in periodontal defects of animal models. Electronic databases (Medline, Scopus, Embase, Web of Science, and Google Scholar) were searched (March 2010–December 2020) for every study that used biomolecules for regeneration of periodontal osseous defects in animal models. Regenerated bone height or area, new cementum, new connective tissues, new regenerated periodontal ligament and the dimensions of epithelial attachment (either in mm/mm2 or percentage) were the investigated outcomes. The risk of bias of the included studies was assessed using the SYRCLE tool. In closing, there was a meta-analysis carried out on the outcomes of interest. Trial Sequential Analysis was also carried out to figure out the power of meta-analytic outcomes. From 1995 studies which were found in the initial search, 34 studies were included in this review, and 20 of them were selected for the meta-analysis. The eligible studies were categorized according to the morphology of the experimental periodontal defects as one-, two-, and three-wall intrabony defects; furcation defects, and recession-type defects. The most studied biomolecules were rhFGF-2, rhGDF-5, platelet-derived growth factor, bone morphogenetic protein-2, and enamel matrix derivative (EMD). Based on the meta-analysis findings, combined application of biomolecules with regenerative treatments could improve new bone and cementum formation near 1 mm when compared to the control groups in one, two and three-wall intrabony defect models (p < 0.001). In furcation grade II defect, the addition of biomolecules was observed to enhance bone area gain and cementum height regeneration up to almost 2 mm (p < 0.001). Trial Sequential Analysis results confirmed the significant effect in the aforementioned meta-analyses. In cases of the buccal recession model, the application of rhFGF-2 and rhGDF-5 decreased the dimension of epithelial attachments besides regenerative advantages on bone and cementum formation, but EMD deposition exerted no inhibitory effect on epithelial down-growth. Application of biologic modifiers especially FGF-2 and GDF-5, could positively improve the regeneration of periodontal tissues, particularly cementum and bone in animal models. Trial Sequential Analysis confirmed the results but the power of the evidences was high just in some subgroup meta-analyses, like bone and cementum regeneration in furcation grade II model and cementum regeneration in one-wall intrabony defects. The outcomes of this study can potentially endow clinicians with guidelines for the appropriate application of growth factors in periodontal regenerative therapies.
CONFLICT OF INTEREST
The authors declare no conflict of interest related to this research.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
term3241-sup-0001-table_s1.docx37.1 KB | Table S1 |
term3241-sup-0002-table_s2.docx25.3 KB | Table S2 |
term3241-sup-0003-table_s3.docx14.7 KB | Table S3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Anzai, J., Kitamura, M., Nozaki, T., Nagayasu, T., Terashima, A., Asano, T., & Murakami, S. (2010). Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate (β-TCP) on the Beagle dog 1-wall periodontal defect model. Biochemical and Biophysical Research Communications, 403(3–4), 345–350.
- Anzai, J., Nagayasu-Tanaka, T., Terashima, A., Asano, T., Yamada, S., Nozaki, T., Kitamura, M., & Murakami, S. (2016). Long-term observation of regenerated periodontium induced by FGF-2 in the Beagle dog 2-wall periodontal defect model. PLoS One, 11(7), e0158485.
- Basan, T., Welly, D., Kriebel, K., Scholz, M., Brosemann, A., Liese, J., Vollmar, B., Frerich, B., & Lang, H. (2017). Enhanced periodontal regeneration using collagen, stem cells or growth factors. Frontiers in Bioscience, 9(1), 180–193.
10.2741/s482 Google Scholar
- Bizenjima, T., Seshima, F., Ishizuka, Y., Takeuchi, T., Kinumatsu, T., & Saito, A. (2015). Fibroblast growth factor-2 promotes healing of surgically created periodontal defects in rats with early, streptozotocin-induced diabetes via increasing cell proliferation and regulating angiogenesis. Journal of Clinical Periodontology, 42(1), 62–71.
- Bowers, G. M., Chadroff, B., Carnevale, R., Mellonig, J., Corio, R., Emerson, J., Stevens, M., & Romberg, E. (1989). Histologic evaluation of new attachment apparatus formation in humans. Part I. Journal of Periodontology, 60(12), 664–674.
- Cekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64(1), 57–80.
- Cha, J. K., Sun, Y.-K., Lee, J.-S., Choi, S.-H., & Jung, U.-W. (2017). Root coverage using porcine collagen matrix with fibroblast growth factor-2: A pilot study in dogs. Journal of Clinical Periodontology, 44(1), 96–103.
- Chang, P. C., Dovban, A. S., Lim, L. P., Chong, L. Y., Kuo, M. Y., & Wang, C.-H. (2013). Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials, 34(38), 9990–9997.
- Chien, K. H., Chang, Y.-L., Wang, M.-L., Chuang, J.-H., Yang, Y.-C., Tai, M.-C., Wang, C.-Y., Liu, Y.-Y., Li, H.-Y., Chen, J.-T., Kao, S.-Y., Chen, H.-L., & Lo, W.-L. (2018). Promoting induced pluripotent stem cell-driven biomineralization and periodontal regeneration in rats with maxillary-molar defects using injectable BMP-6 hydrogel. Scientific Reports, 8(1), 114.
- Chisini, L. A., Conde, M. C. M., Grazioli, G., Martin, A. S. S., Carvalho, R. V. D., Sartori, L. R. M., & Demarco, F. F. (2019). Bone, periodontal and dental pulp regeneration in dentistry: A systematic scoping review. Brazilian Dental Journal, 30(2), 77–95.
- Chiu, H. C., Chiang, C. Y., Tu, H. P., Wikesjö, U. M., Susin, C., & Fu, E. (2013). Effects of bone morphogenetic protein-6 on periodontal wound healing/regeneration in supraalveolar periodontal defects in dogs. Journal of Clinical Periodontology, 40(6), 624–630.
- Cortellini, P., Pini Prato, G., & Tonetti, M. S. (1993). Periodontal regeneration of human infrabony defects. II. Re-entry procedures and bone measures. Journal of Periodontology, 64(4), 261–268.
- Dabra, S., Chhina, K., Soni, N., & Bhatnagar, R. (2012). Tissue engineering in periodontal regeneration: A brief review. Dental Research Journal, 9(6), 671–680.
- Darby, I. B., & Morris, K. H. (2013). A systematic review of the use of growth factors in human periodontal regeneration. Journal of Periodontology, 84(4), 465–476.
- Donos, N., Park, J.-C., Vajgel, A., de Carvalho Farias, B., & Dereka, X. (2018). Description of the periodontal pocket in preclinical models: Limitations and considerations. Periodontology 2000, 76(1), 16–34.
- Emerton, K. B., Drapeau, S. J., Prasad, H., Rohrer, M., Roffe, P., Hopper, K., Schoolfield, J., Jones, A., & Cochran, D. L. (2011). Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. Journal of Dental Research, 90(12), 1416–1421.
- Fawzy El-Sayed, K. M., Mekhemar, M. K., Beck-Broichsitter, B. E., Bähr, T., Hegab, M., Receveur, J., Heneweer, C., Becker, S. T., Wiltfang, J., & Dörfer, C. E. (2015). Periodontal regeneration employing gingival margin-derived stem/progenitor cells in conjunction with IL-1ra-hydrogel synthetic extracellular matrix. Journal of Clinical Periodontology, 42(5), 448–457.
- Furfaro, F., Ang, E. S. M., Lareu, R. R., Murray, K., & Goonewardene, M. (2014). A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model–A pilot study. Progress in Orthodontics, 15(1), 2.
- Gauthier, P., Yu, Z., Tran, Q. T., Bhatti, F. U., Zhu, X., & Huang, G. T. (2017). Cementogenic genes in human periodontal ligament stem cells are downregulated in response to osteogenic stimulation while upregulated by vitamin C treatment. Cell and Tissue Research, 368(1), 79–92.
- He, X. T., Li, X., Xia, Y., Yin, Y., Wu, R. X., Sun, H. H., & Chen, F.-M. (2019). Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomaterialia, 88, 162–180.
- Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE's risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43.
- Huang, R. Y., Tai, W. C., Ho, M. H., & Chang, P. C. (2020). Combination of a biomolecule-aided biphasic cryogel scaffold with a barrier membrane adhering PDGF-encapsulated nanofibers to promote periodontal regeneration. Journal of Periodontal Research, 55(4), 529–538.
- Ishii, Y., Fujita, T., Okubo, N., Ota, M., Yamada, S., & Saito, A. (2013). Effect of basic fibroblast growth factor (FGF-2) in combination with beta tricalcium phosphate on root coverage in dog. Acta Odontologica Scandinavica, 71(2), 325–332.
- Jimbo, R., Singer, J., Tovar, N., Marin, C., Neiva, R., Bonfante, E. A., Janal, M. N., Contamin, H., & Coelho, P. G. (2018). Regeneration of the cementum and periodontal ligament using local BDNF delivery in class II furcation defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(4), 1611–1617.
- Kammerer, P. W., Scholz, M., Baudisch, M., Liese, J., Wegner, K., Frerich, B., & Lang, H. (2017). Guided bone regeneration using collagen scaffolds, growth factors, and periodontal ligament stem cells for treatment of peri-implant bone defects in vivo. Stem Cells International, 2017, 3548435.
- Kang, W., Liang, Q., Du, L., Shang, L., Wang, T., & Ge, S. (2019). Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. Journal of Periodontal Research, 54(4), 424–434.
- Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2015). Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000, 68(1), 66–82.
- Kato, A., Miyaji, H., Ishizuka, R., Tokunaga, K., Inoue, K., Kosen, Y., Yokoyama, H., Sugaya, T., Tanaka, S., Sakagami, R., & Kawanami, M. (2015). Combination of root surface modification with BMP-2 and collagen hydrogel scaffold implantation for periodontal healing in Beagle dogs. The Open Dentistry Journal, 9, 52–59.
- Kim, C. S., Choi, S.-H., Chai, J.-K., Cho, K.-S., Moon, I.-S., Wikesjö, U. M. E., & Kim, C.-K. (2004). Periodontal repair in surgically created intrabony defects in dogs: Influence of the number of bone walls on healing response. Journal of Periodontology, 75(2), 229–235.
- Kim, Y. T., Wikesjö, U. M. E., Jung, U.-W., Lee, J.-S., Kim, T.-G., & Kim, C.-K. (2013). Comparison between a β-tricalcium phosphate and an absorbable collagen sponge carrier technology for rhGDF-5-stimulated periodontal wound healing/regeneration. Journal of Periodontology, 84(6), 812–820.
- Kinane, D. F. (2001). Causation and pathogenesis of periodontal disease. Periodontology 2000, 25, 8–20.
- Kuniyasu, H., Hirose, Y., Ochi, M., Yajima, A., Sakaguchi, K., Murata, M., & Pohl, J. (2003). Bone augmentation using rhGDF-5-collagen composite. Clinical Oral Implants Research, 14(4), 490–499.
- Kuroda, Y., Kawai, T., Goto, K., & Matsuda, S. (2019). Clinical application of injectable growth factor for bone regeneration: A systematic review. Inflammation and Regeneration, 39, 20.
- Kwon, D. H., Bennett, W., Herberg, S., Bastone, P., Pippig, S., Rodriguez, N. A., Susin, C., & Wikesjö, U. M. E. (2010a). Evaluation of an injectable rhGDF-5/PLGA construct for minimally invasive periodontal regenerative procedures: A histological study in the dog. Journal of Clinical Periodontology, 37(4), 390–397.
- Kwon, D. H., Bisch, F. C., Herold, R. W., Pompe, C., Bastone, P., Rodriguez, N. A., Susin, C., & Wikesjö, U. M. (2010b). Periodontal wound healing/regeneration following the application of rhGDF-5 in a beta-TCP/PLGA carrier in critical-size supra-alveolar periodontal defects in dogs. Journal of Clinical Periodontology, 37(7), 667–674.
- Kwon, H. R., Wikesjö, U. M., Park, J. C., Kim, Y. T., Bastone, P., Pippig, S. D., & Kim, C. K. (2010c). Growth/differentiation factor-5 significantly enhances periodontal wound healing/regeneration compared with platelet-derived growth factor-BB in dogs. Journal of Clinical Periodontology, 37(8), 739–746.
- Lanza, R. (2020). Principles of tissue engineering. Elsevier.
- Laugisch, O., Cosgarea, R., Nikou, G., Nikolidakis, D., Donos, N., Salvi, G. E., Stavropoulos, A., Jepsen, S., & Sculean, A. (2019). Histologic evidence of periodontal regeneration in furcation defects: A systematic review. Clinical Oral Investigations, 23(7), 2861–2906.
- Lee, A. R., Choi, H., Kim, J.-H., Cho, S.-W., & Park, Y.-B. (2017). Effect of serial use of bone morphogenetic protein 2 and fibroblast growth factor 2 on periodontal tissue regeneration. Implant Dentistry, 26(5), 664–673.
- Lee, J., & Wikesjö, U. M. E. (2014). Growth/differentiation factor-5: Pre-clinical and clinical evaluations of periodontal regeneration and alveolar augmentation–Review. Journal of Clinical Periodontology, 41(8), 797–805.
- Lee, J. S., Wikesjö, U. M. E., Jung, U.-W., Choi, S.-H., Pippig, S., Siedler, M., & Kim, C.-K. (2010). Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a β-tricalcium phosphate carrier into one-wall intrabony defects in dogs. Journal of Clinical Periodontology, 37(4), 382–389.
- Lee, J. S., Wikesjö, U. M. E., Park, J.-C., Jang, Y.-J., Pippig, S. D., Bastone, P., Choi, S.-H., & Kim, C.-K. (2012). Maturation of periodontal tissues following implantation of rhGDF-5/β-TCP in one-wall intra-bony defects in dogs: 24-week histological observations. Journal of Clinical Periodontology, 39(5), 466–474.
- Li, C., Bi, W., Zhang, D., Sang, Z., Li, L., & Yu, Y. (2017a). Transforming growth factor-beta1 promotes Geistlich Bio-Oss® osteogenesis via inhibiting local inflammation response in vivo. International Journal of Clinical and Experimental Pathology, 10(9), 9310–9317.
- Li, F., Yu, F., Xu, X., Li, C., Huang, D., Zhou, X., Ye, L., & Zheng, L. (2017b). Evaluation of recombinant human FGF-2 and PDGF-BB in periodontal regeneration: A systematic review and meta-analysis. Scientific Reports, 7(1), 65.
- Li, Y., Qiao, Z., Yu, F., Hu, H., Huang, Y., Xiang, Q., Zhang, Q., Yang, Y., Zhao, Y. (2019). Transforming growth factor-beta3/chitosan sponge (TGF-beta3/CS) facilitates osteogenic differentiation of human periodontal ligament stem cells. International Journal of Molecular Sciences, 20(20), 4982.
- Matsuse, K., Hashimoto, Y., Kakinoki, S., Yamaoka, T., & Morita, S. (2018). Periodontal regeneration induced by porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor in a canine model of 2-wall periodontal defects. Medical Molecular Morphology, 51(1), 48–56.
- Min, C. K., Wikesjö, U. M. E., Park, J.-C., Chae, G.-J., Pippig, S. D., Bastone, P., Kim, C.-S., & Kim, C.-K. (2011). Wound healing/regeneration using recombinant human growth/differentiation factor-5 in an injectable poly-lactide-co-glycolide-acid composite carrier and a one-wall intra-bony defect model in dogs. Journal of Clinical Periodontology, 38(3), 261–268.
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, b2535–b2535.
- Momose, T., Miyaji, H., Kato, A., Ogawa, K., Yoshida, T., Nishida, E., Murakami, S., Kosen, Y., Sugaya, T., & Kawanami, M. (2016). Collagen hydrogel scaffold and fibroblast growth factor-2 accelerate periodontal healing of class II furcation defects in dog. The Open Dentistry Journal, 10, 347–359.
- Moreno Sancho, F., Leira, Y., Orlandi, M., Buti, J., Giannobile, W. V., & D'Aiuto, F. (2019). Cell-based therapies for alveolar bone and periodontal regeneration: Concise review. Stem Cells Translational Medicine, 8(12), 1286–1295.
- Nagayasu-Tanaka, T., Anzai, J., Takaki, S., Shiraishi, N., Terashima, A., Asano, T., Nozaki, T., Kitamura, M., & Murakami, S. (2015). Action mechanism of fibroblast growth factor-2 (FGF-2) in the promotion of periodontal regeneration in Beagle dogs. PLoS One, 10(6).
- Nakamura, T., Yamamoto, M., Tamura, M., & Izumi, Y. (2003). Effects of growth/differentiation factor-5 on human periodontal ligament cells. Journal of Periodontal Research, 38(6), 597–605.
- Nevins, M., Nevins, M. L., Karimbux, N., Kim, S.-W., Schupbach, P., & Kim, D. M. (2012). The combination of purified recombinant human platelet-derived growth factor-BB and equine particulate bone graft for periodontal regeneration. Journal of Periodontology, 83(5), 565–573.
- Noda, K., Seshima, F., Okubo, N., Ishii, Y., Ota, M., Yamada, S., & Saito, A. (2012). Effect of platelet-derived growth factor-BB on root resorption after reimplantation of partially denuded tooth in dog. Dental Traumatology, 28(3), 217–225.
- Ogawa, K., Miyaji, H., Kato, A., Kosen, Y., Momose, T., Yoshida, T., Nishida, E., Miyata, S., Murakami, S., Takita, H., Fugetsu, B., Sugaya, T., & Kawanami, M. (2016). Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. Journal of Periodontal Research, 51(6), 758–767.
- Oortgiesen, D. A., Walboomers, X. F., Bronckers, A. L., Meijer, G. J., & Jansen, J. A. (2014). Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. Journal of Tissue Engineering and Regenerative Medicine, 8(3), 202–209.
- Palioto, D. B., de O Macedo, G., Queiroz, A. C., Taba, M., Jr, Souza, S. L., Grisi, M. F., & Novaes, A. B., Jr (2012). Enamel matrix derivative and transforming growth factor-beta1 in class III furcation defects. A histomorphometric study in dogs. Journal of the International Academy of Periodontology, 14(3), 69–75.
- Pan, J., Deng, J., Luo, Y., Yu, L., Zhang, W., Han, X., You, Z., & Liu, Y. (2019). Thermosensitive hydrogel delivery of human periodontal stem cells overexpressing platelet-derived growth factor-BB enhances alveolar bone defect repair. Stem Cells and Development, 28(24), 1620–1631.
- Park, J. C., Wikesjö, U. M. E., Koo, K.-T., Lee, J.-S., Kim, Y.-T., Pippig, S. D., Bastone, P., Kim, C.-S., & Kim, C.-K. (2012). Maturation of alveolar bone following implantation of an rhGDF-5/PLGA composite into 1-wall intra-bony defects in dogs: 24-week histometric observations. Journal of Clinical Periodontology, 39(6), 565–573.
- Pilipchuk, S. P., Fretwurst, T., Yu, N., Larsson, L., Kavanagh, N. M., Asa'ad, F., Cheng, K. C. K., Lahann, J., & Giannobile, W. V. (2018). Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues. Advanced Healthcare Materials, 7(22), e1800750.
- Pilipchuk, S. P., Plonka, A. B., Monje, A., Taut, A. D., Lanis, A., Kang, B., & Giannobile, W. V. (2015). Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials, 31(4), 317–338.
- Plonka, A. B., Khorsand, B., Yu, N., Sugai, J. V., Salem, A. K., Giannobile, W. V., & Elangovan, S. (2017). Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Therapy, 24(1), 31–39.
- Polimeni, G., Albandar, J. M., & Wikesjo, U. M. (2005). Prognostic factors for alveolar regeneration: Effect of space provision. Journal of Clinical Periodontology, 32(9), 951–954.
- Polimeni, G., Xiropaidis, A. V., & Wikesjo, U. M. (2006). Biology and principles of periodontal wound healing/regeneration. Periodontology 2000, 41, 30–47.
- Qiu, Z. Y., Chen, C., Wang, X.-M., & Lee, I.-S. (2014). Advances in the surface modification techniques of bone-related implants for last 10 years. Regenerative Biomaterials, 1(1), 67–79.
- Rao, S. M., Ugale, G. M., & Warad, S. B. (2013). Bone morphogenetic proteins: Periodontal regeneration. North American Journal of Medical Sciences, 5(3), 161–168.
- Ripamonti, U., Parak, R., Klar, R. M., Dickens, C., Dix-Peek, T., & Duarte, R. (2017). Cementogenesis and osteogenesis in periodontal tissue regeneration by recombinant human transforming growth factor-beta3: A pilot study in Papio ursinus. Journal of Clinical Periodontology, 44(1), 83–95.
- Saito, A., Saito, E., Kuboki, Y., Kimura, M., Nakajima, T., Yuge, F., Kato, T., Honma, Y., Takahashi, T., & Ohata, N. (2013). Periodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogs. Dental Materials Journal, 32(2), 256–262.
- Sakaguchi, K., Katagiri, W., Osugi, M., Kawai, T., Sugimura-Wakayama, Y., & Hibi, H. (2017). Periodontal tissue regeneration using the cytokine cocktail mimicking secretomes in the conditioned media from human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 484(1), 100–106.
- Sallum, E. A., Ribeiro, F. V., Ruiz, K. S., & Sallum, A. W. (2019). Experimental and clinical studies on regenerative periodontal therapy. Periodontology 2000, 79(1), 22–55.
- Sano, K., Usui, M., Moritani, Y., Nakazawa, K., Hanatani, T., Kondo, H., Nakatomi, M., Onizuka, S., Iwata, T., Sato, T., Togari, A., Ariyoshi, W., Nishihara, T., & Nakashima, K. (2020). Co-cultured spheroids of human periodontal ligament mesenchymal stem cells and vascular endothelial cells enhance periodontal tissue regeneration. Regenerative Therapy, 14, 59–71.
- Song, D. S., Park, J. C., Jung, I. H., Choi, S. H., Cho, K. S., Kim, C. K., & Kim, C.-S. (2011). Enhanced adipogenic differentiation and reduced collagen synthesis induced by human periodontal ligament stem cells might underlie the negative effect of recombinant human bone morphogenetic protein-2 on periodontal regeneration. Journal of Periodontal Research, 46(2), 193–203.
- Sanz, M., Jepsen, K., Eickholz, P., & Jepsen, S. (2015). Clinical concepts for regenerative therapy in furcations. Periodontology 2000, 68(1), 308–332.
- Schmid, G. J., Kobayashi, C., Sandell, L. J., & Ornitz, D. M. (2009). Fibroblast growth factor expression during skeletal fracture healing in mice. Developmental Dynamics, 238(3), 766–774.
- Shirakata, Y., Sculean, A., Shinohara, Y., Sena, K., Takeuchi, N., Bosshardt, D. D., & Noguchi, K. (2016). Healing of localized gingival recessions treated with a coronally advanced flap alone or combined with an enamel matrix derivative and a porcine acellular dermal matrix: A preclinical study. Clinical Oral Investigations, 20(7), 1791–1800.
- Shirakata, Y., Takeuchi, N., Yoshimoto, T., Taniyama, K., & Noguchi, K. (2013). Effects of enamel matrix derivative and basic fibroblast growth factor with β-tricalcium phosphate on periodontal regeneration in one-wall intrabony defects: An experimental study in dogs. The International Journal of Periodontics and Restorative Dentistry, 33(5), 641–649.
- Shirakata, Y., Taniyama, K., Yoshimoto, T., Miyamoto, M., Takeuchi, N., Matsuyama, T., & Noguchi, K. (2010). Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs. Journal of Clinical Periodontology, 37(4), 374–381.
- Shujaa Addin, A., Akizuki, T., Hoshi, S., Matsuura, T., Ikawa, T., Fukuba, S., Matsui, M., Tabata, Y., & Izumi, Y. (2017). Biodegradable gelatin/beta-tricalcium phosphate sponges incorporating recombinant human fibroblast growth factor-2 for treatment of recession-type defects: A split-mouth study in dogs. Journal of Periodontal Research, 52(5), 863–871.
- Sowmya, S., Mony, U., Jayachandran, P., Reshma, S., Kumar, R. A., Arzate, H., Nair, S. V., & Jayakumar, R. (2017). Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Advanced Healthcare Materials, 6(7).
- Stavropoulos, A., Windisch, P., Gera, I., Capsius, B., Sculean, A., & Wikesjö, U. M. E. (2011). A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration. Journal of Clinical Periodontology, 38(11), 1044–1054.
- Susin, C., Fiorini, T., Lee, J., De Stefano, J. A., Dickinson, D. P., & Wikesjö, U. M. E. (2015). Wound healing following surgical and regenerative periodontal therapy. Periodontology 2000, 68(1), 83–98.
- Tabas, I. (2010). The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circulation Research, 107(7), 839–850.
- Takayama, I., Tanabe, H., Nishiyama, T., Ito, H., Amizuka, N., Li, M., Katsube, K.-i., Kii, I., & Kudo, A. (2017). Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. Journal of Cell Communication and Signaling, 11(1), 5–13.
- Takeshima, N., Sozu, T., Tajika, A., Ogawa, Y., Hayasaka, Y., & Furukawa, T. A. (2014). Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Medical Research Methodology, 14, 30.
- Tavelli, L., Ravidà, A., Barootchi, S., Chambrone, L., & Giannobile, W. V. (2021). Recombinant human platelet-derived growth factor: A systematic review of clinical findings in oral regenerative procedures. JDR Clinical and Translational Research, 6(2), 161–173.
- Tayalia, P., & Mooney, D. J. (2009). Controlled growth factor delivery for tissue engineering. Advanced Materials, 21(32–33), 3269–3285.
- Teare, J. A., Petit, J. C., & Ripamonti, U. (2012). Synergistic induction of periodontal tissue regeneration by binary application of human osteogenic protein-1 and human transforming growth factor-β 3 in class II furcation defects of Papio ursinus. Journal of Periodontal Research, 47(3), 336–344.
- Tian, L. (2007). Inferences on standardized mean difference: The generalized variable approach. Statistics in Medicine, 26(5), 945–953.
- Tsuboi, R., Sasaki, J. I., Kitagawa, H., Yoshimoto, I., Takeshige, F., & Imazato, S. (2018). Development of a novel dental resin cement incorporating FGF-2-loaded polymer particles with the ability to promote tissue regeneration. Dental Materials, 34(4), 641–648.
- Vaquette, C., Pilipchuk, S. P., Bartold, P. M., Hutmacher, D. W., Giannobile, W. V., & Ivanovski, S. (2018). Tissue engineered constructs for periodontal regeneration: Current status and future perspectives. Advanced Healthcare Materials, 7(21), e1800457.
- Wang, B., Mastrogiacomo, S., Yang, F., Shao, J., Ong, M. M. A., Chanchareonsook, N., Jansen, J. A., Walboomers, X. F., & Yu, N. (2019). Application of BMP-bone cement and FGF-gel on periodontal tissue regeneration in nonhuman primates. Tissue Engineering Part C Methods, 25(12), 748–756.
- Wang, C., Liu, Y., Fan, Y., & Li, X. (2017a). The use of bioactive peptides to modify materials for bone tissue repair. Regenerative Biomaterials, 4(3), 191–206.
- Wang, P., Wang, Y., Tang, W., Wang, X., Pang, Y., Yang, S., Wei, Y., Gao, H., Wang, D., & Cao, Z. (2017b). Bone morphogenetic protein-9 enhances osteogenic differentiation of human periodontal ligament stem cells via the JNK pathway. PLoS One, 12(1), e0169123.
- Wei, L., Teng, F., Deng, L., Liu, G., Luan, M., Jiang, J., Liu, Z., & Liu, Y. (2019). Periodontal regeneration using bone morphogenetic protein 2 incorporated biomimetic calcium phosphate in conjunction with barrier membrane: A pre-clinical study in dogs. Journal of Clinical Periodontology, 46(12), 1254–1263.
- Wikesjo, U. M., Guglielmoni, P., Promsudthi, A., Cho, K.-S., Trombelli, L., Selvig, K. A., Jin, L., & Wozney, J. M. (1999). Periodontal repair in dogs: Effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. Journal of Clinical Periodontology, 26(6), 392–400.
- Xiao, L., Naganawa, T., Lorenzo, J., Carpenter, T. O., Coffin, J. D., & Hurley, M. M. (2010). Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO. Journal of Biological Chemistry, 285(4), 2834–2846.
- Xiao, Y., Yin, Q., Wang, L., & Bao, C. (2015). Macro-porous calcium phosphate scaffold with collagen and growth factors for periodontal bone regeneration in dogs. Ceramics International, 41(1), 995–1003.
- Xu, M., Wei, X., Fang, J., & Xiao, L. (2019). Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration. Bioscience Reports, 39(12), BSR20190785.
- Yamashita, M., Lazarov, M., Jones, A. A., Mealey, B. L., Mellonig, J. T., & Cochran, D. L. (2010). Periodontal regeneration using an anabolic peptide with two carriers in baboons. Journal of Periodontology, 81(5), 727–736.
- Yamano, S., Haku, K., Yamanaka, T., Dai, J., Takayama, T., Shohara, R., Tachi, K., Ishioka, M., Hanatani, S., Karunagaran, S., Wada, K., & Moursi, A. M. (2014). The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration. Biomaterials, 35(8), 2446–2453.
- Yan, X. Z., Ge, S.-H., Sun, Q.-F., Guo, H.-M., & Yang, P.-S. (2010). A pilot study evaluating the effect of recombinant human bone morphogenetic protein-2 and recombinant human beta-nerve growth factor on the healing of class III furcation defects in dogs. Journal of Periodontology, 81(9), 1289–1298.
- Yang, L., Zhang, Y., Dong, R., Peng, L., Liu, X., Wang, Y., & Cheng, X. (2010). Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. Journal of Periodontal Research, 45(4), 532–540.
- Yin, X., Li, P., Li, Y., Cai, Y., Wen, J., & Luan, Q. (2017). Growth/differentiation factor-5 promotes in vitro/vivo periodontal specific differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 14(5), 4111–4117.
- Yu, S. J., Lee, J. S., Jung, U. W., Park, J. C., Kim, B. O., & Choi, S. H. (2015). Effect of fibroblast growth factor on injured periodontal ligament and cementum after tooth replantation in dogs. Journal of Periodontal and Implant Science, 45(3), 111–119.
- Zhang, Y., Miron, R. J., Li, S., Shi, B., Sculean, A., & Cheng, X. (2015). Novel mesoporous bioglass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. Journal of Clinical Periodontology, 42(3), 262–271.