Design, construction, and biological testing of an implantable porous trilayer scaffold for repairing osteoarthritic cartilage
Yaima Campos
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Biomaterials Center, University of Havana, Havana, Cuba
Search for more papers by this authorFrancisco J. Sola
Biomaterials Center, University of Havana, Havana, Cuba
Search for more papers by this authorAmisel Almirall
Biomaterials Center, University of Havana, Havana, Cuba
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
Search for more papers by this authorGastón Fuentes
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Biomaterials Center, University of Havana, Havana, Cuba
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
Bioforge Lab, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Valladolid, Spain
Search for more papers by this authorChristina Eich
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Search for more papers by this authorIvo Que
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Search for more papers by this authorEric Kaijzel
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Search for more papers by this authorYasuhiko Tabata
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
Search for more papers by this authorLuis Quintanilla
Bioforge Lab, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Valladolid, Spain
Search for more papers by this authorJosé C. Rodríguez-Cabello
Bioforge Lab, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Valladolid, Spain
Search for more papers by this authorCorresponding Author
Luis J. Cruz
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Correspondence
Luis J. Cruz, Translational Nanomedicine and Imaging Group, Department of Radiology, C2-S-room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Email: [email protected]
Search for more papers by this authorYaima Campos
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Biomaterials Center, University of Havana, Havana, Cuba
Search for more papers by this authorFrancisco J. Sola
Biomaterials Center, University of Havana, Havana, Cuba
Search for more papers by this authorAmisel Almirall
Biomaterials Center, University of Havana, Havana, Cuba
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
Search for more papers by this authorGastón Fuentes
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Biomaterials Center, University of Havana, Havana, Cuba
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
Bioforge Lab, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Valladolid, Spain
Search for more papers by this authorChristina Eich
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Search for more papers by this authorIvo Que
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Search for more papers by this authorEric Kaijzel
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Search for more papers by this authorYasuhiko Tabata
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
Search for more papers by this authorLuis Quintanilla
Bioforge Lab, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Valladolid, Spain
Search for more papers by this authorJosé C. Rodríguez-Cabello
Bioforge Lab, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Valladolid, Spain
Search for more papers by this authorCorresponding Author
Luis J. Cruz
Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
Correspondence
Luis J. Cruz, Translational Nanomedicine and Imaging Group, Department of Radiology, C2-S-room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Email: [email protected]
Search for more papers by this authorAbstract
Various tissue engineering systems for cartilage repair have been designed and tested over the past two decades, leading to the development of many promising cartilage grafts. However, no one has yet succeeded in devising an optimal system to restore damaged articular cartilage. Here, the design, assembly, and biological testing of a porous, chitosan/collagen-based scaffold as an implant to repair damaged articular cartilage is reported. Its gradient composition and trilayer structure mimic variations in natural cartilage tissue. One of its layers includes hydroxyapatite, a bioactive component that facilitates the integration of growing tissue on local bone in the target area after scaffold implantation. The scaffold was evaluated for surface morphology; rheological performance (storage, loss, complex, and time-relaxation moduli at 1 kHz); physiological stability; in vitro activity and cytotoxicity (on a human chondrocyte C28 cell line); and in vivo performance (tissue growth and biodegradability), in a murine model of osteoarthritis. The scaffold was shown to be mechanically resistant and noncytotoxic, favored tissue growth in vivo, and remained stable for 35 days postimplantation in mice. These encouraging results highlight the potential of this porous chitosan/collagen scaffold for clinical applications in cartilage tissue engineering.
CONFLICT OF INTEREST
There are no conflicts to declare.
Supporting Information
Filename | Description |
---|---|
term3001-sup-0001-Supplementary.docxWord 2007 document , 2.8 MB |
Figure S1. Preparation of the trilayer scaffold. Figure S2. Micro-CT of scaffold specimens in different planes for better view of hydroxyapatite localizations |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aiba, S. (1991). Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. International Journal of Biological Macromolecules, 13(1), 40–44. https://doi.org/10.1016/0141-8130(91)90008-I
- Alberts, B., Bray, D., Lewis, J., et al. (1994). Molecular biology of the cell ( 3rd ed.). New York: Garland Publishing Inc.
- Bartels E.M.; Lund H.; Hagen K. B.; Dagfinrud H; Christensen R; Danneskiold-Samsøe, B. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database of Systematic Reviews 2007, Issue 4. Art. No.: CD005523. DOI: https://doi.org/10.1002/14651858.CD005523.pub2.
- Bedi, A., Feeley, B. T., & Williams, R. J. I. (2010). Management of articular cartilage defects of the knee. The Journal of Bone and Joint Surgery, 92(4), 994–1009. https://doi.org/10.2106/jbjs.i.00895
- Berrier, A. L., & Yamada, K. M. (2007). Cell–matrix adhesion. Journal of Cellular Phisiology, 213(3), 565–573. https://doi.org/10.1002/jcp.21237
- Blum, J. S., Temenoff, J. S., Park, H., Jansen, J. A., Mikos, A. G., & Barry, M. A. (2004). Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials, 25(27), 5809–5819. https://doi.org/10.1016/j.biomaterials.2004.01.035
- Choong, C. S. N., Hutmacher, D. W., & Triffitt, J. T. (2006). Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Engineering, 12(9), 2521–2531. https://doi.org/10.1089/ten.2006.12.2521
- Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60(2), 243–262. https://doi.org/10.1016/j.addr.2007.08.027
- Clegg, D. O., Reda, D. J., Harris, C. L., Klein, M. A., O'Dell, J. R., Hooper, M. M., … Williams, H. J. (2006). Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. New England Journal of Medicine, 354(8), 795–808. https://doi.org/10.1056/NEJMoa052771
- Cowles, E. A., Kovar, J. L., Curtis, E. T., Xu, H., & Othman, S. F. (2013). Near-infrared optical imaging for monitoring the regeneration of osteogenic tissue-engineered constructs. Biores Open Access, 2(3), 186–191. https://doi.org/10.1089/biores.2013.0005
- Dallan, P. R. M., da Luz Moreira, P., Petinari, L., Malmonge, S. M., Beppu, M. M., Genari, S. C., & Moraes, A. M. (2007). Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80(2), 394–405. https://doi.org/10.1002/jbm.b.30610
- Dvir-Ginzberg, M., Gamlieli-Bonshtein, I., Agbaria, R., & Cohen, S. (2003). Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Engineering, 9(4), 757–766. https://doi.org/10.1089/107632703768247430
- Errington, R. J., Fricker, M. D., Wood, J. L., Hall, A. C., & White, N. S. (1997). Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: A pragmatic approach. American Journal of Phisiology, 272(3), C1040–C1051. https://doi.org/10.1152/ajpcell.1997.272.3.C1040
- Goldring, M. B., Birkhead, J. R., Suen, L. F., Yamin, R., Mizuno, S., Glowacki, J., … Apperley, J. F. (1994). Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. The Journal of Clinical Investigation, 94(6), 2307–2316. https://doi.org/10.1172/jci117595
- Gonzalez de Torre, I., Santos, M., Quintanilla, L., Testera, A., Alonso, M., & Cabello, J. C. R. (2014). Elastin-like recombinamer catalyst-free click gels: Characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomaterialia, 10(6), 2495–2505. https://doi.org/10.1016/j.actbio.2014.02.006
- Guo, T., Zhao, J., Chang, J., Ding, Z., Hong, H., Chen, J., & Zhang, J. (2006). Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation. Biomaterials, 27(7), 1095–1103. https://doi.org/10.1016/j.biomaterials.2005.08.015
- Hayami, T. (2008). Osteoarthritis of the knee joint as a cause of musculoskeletal ambulation disability symptom complex (MADS). Clinical Calcium, 18(11), 1574–1580. doi: CliCa081115741580
- Hench, L. L. (1998). Bioactive materials: The potential for tissue regeneration. Journal of Biomedical Materials Research. Part A, 41(4), 511–518. https://doi.org/10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F
- Hochberg, M. C., Altman, R. D., Brandt, K. D., Clark, B. M., Dieppe, P. A., Griffin, M. R., … Schnitzer, T. J. (1995). Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis and Rheumatism, 38(11), 1541–1546. https://doi.org/10.1002/art.1780381103
- Hofmann, A., Konrad, L., Gotzen, L., Printz, H., Ramaswamy, A., & Hofmann, C. (2003). Bioengineered human bone tissue using autogenous osteoblasts cultured on different biomatrices. Journal of Biomedical Materials Research. Part A, 67(1), 191–199. https://doi.org/10.1002/jbm.a.10594
- Honda, M. J., Yada, T., Ueda, M., & Kimata, K. (2004). Cartilage formation by serial passaged cultured chondrocytes in a new scaffold: Hybrid 75:25 poly(L-lactide-epsilon-caprolactone) sponge. Journal of Oral and Maxillofacial Surgery, 62(12), 1510–1516. https://doi.org/10.1016/j.joms.2003.12.042
- van der Horst, G., van Bezooijen, R. L., Deckers, M. M. L., Hoogendam, J., Visser, A., Lwik, C. W. G. M., & Karperien, M. (2002). Differentiation of murine preosteoblastic KS483 cells depends on autocrine bone morphogenetic protein signaling during all phases of osteoblast formation. Bone, 31(6), 661–669. https://doi.org/10.1016/S8756-3282(02)00903-1
- Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432–463. https://doi.org/10.1053/joca.2002.0801
- Khalid, M. N., Agnely, F., Yagoubi, N., Grossiord, J. L., & Couarraze, G. (2002). Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. European Journal of Pharmaceutical Sciences, 15(5), 425–432. https://doi.org/10.1016/S0928-0987(02)00029-5
- Kim, S. H., Lee, J. H., Hyun, H., Ashitate, Y., Park, G. L., Robichaud, K., … Choi, H. S. (2013). Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Nature Scientific Reports, 3, 1198–1204. https://doi.org/10.1038/srep01198
- Kokubo, T. (1991). Bioactive glass ceramics: Properties and applications. Biomaterials, 12(2), 155–163. https://doi.org/10.1016/0142-9612(91)90194-F
- Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
- Kon, E., Mandelbaum, B., Buda, R., Filardo, G., Delcogliano, M., Timoncini, A., … Marcacci, M. (2011). Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: From early degeneration to osteoarthritis. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 27(11), 1490–1501. https://doi.org/10.1016/j.arthro.2011.05.011
- Leahy, A. A., Esfahani, S. A., Foote, A. T., Hui, C. K., Rainbow, R. S., Nakamura, D. S., … Zeng, L. (2015). Analysis of the trajectory of osteoarthritis development in a mouse model by serial near-infrared fluorescence imaging of matrix metalloproteinase activities. Arthritis & Rheumatology, 67(2), 442–453. https://doi.org/10.1002/art.38957
- Lee, K. Y., Ha, W. S., & Park, W. H. (1995). Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 16(16), 1211–1216. https://doi.org/10.1016/0142-9612(95)98126-Y
- Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919–3928. https://doi.org/10.1016/j.biomaterials.2004.09.062
- Ma, L., Gao, C., Mao, Z., Zhou, J., Shen, J., Hu, X., & Han, C. (2003). Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24(26), 4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0
- Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H., & West, J. L. (2001). Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials, 22(22), 3045–3051. https://doi.org/10.1016/S0142-9612(01)00051-5
- Mow, V. C., Holmes, M. H., & Lai, W. M. (1984). Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics, 17(5), 377–394. https://doi.org/10.1016/0021-9290(84)90031-9
- Neo, M., Kotani, S., Nakamura, T., Yamamuro, T., Ohtsuki, C., Kokubo, T., & Bando, Y. (1992). A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. Journal of Biomedical Materials Research Part A, 26(11), 1419–1432. https://doi.org/10.1002/jbm.820261103
- Niemeyer, P., Krause, U., Fellenberg, J., Kasten, P., Seckinger, A., Ho, A. D., & Simank, H. G. (2004). Evaluation of mineralized collagen and alpha-tricalcium phosphate as scaffolds for tissue engineering of bone using human mesenchymal stem cells. Cells, Tissues, Organs, 177(2), 68–78. https://doi.org/10.1159/000079182
- Nieponice, A., Soletti, L., Guan, J., Deasy, B. M., Huard, J., Wagner, W. R., & Vorp, D. A. (2008). Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials, 29(7), 825–833. https://doi.org/10.1016/j.biomaterials.2007.10.044
- Ntziachristos, V., Ripoll, J., & Weissleder, R. (2002). Would near infrared fluorescence signals propagate through large human organs for clinical studies. Optics Letters, 27(5), 527–529. https://doi.org/10.1364/OL.27.000333
- O'Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26(4), 433–441. https://doi.org/10.1016/j.biomaterials.2004.02.052
- Østergaard, M., & Halberg, P. (1998). Intra-articular corticosteroids in arthritic disease. BioDrugs, 9(2), 95–103. https://doi.org/10.2165/00063030-199809020-00002
- Ripamonti, U. (1996). Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials, 17(1), 31–35. https://doi.org/10.1016/0142-9612(96)80752-6
- Secretan, C., Bagnall, K. M., & Jomha, N. M. (2010). Effects of introducing cultured human chondrocytes into a human articular cartilage explant model. Cell and Tissue Research, 339(2), 421–427. https://doi.org/10.1007/s00441-009-0901-z
- Shanmugasundaram, N., Ravichandran, P., Neelakanta Reddy, P., Ramamurty, N., Pal, S., & Panduranga Rao, K. (2001). Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials, 22(14), 1943–1951. https://doi.org/10.1016/S0142-9612(00)00220-9
- Ślósarczyk, A., Paszkiewicz, Z., & Paluszkiewicz, C. (2005). FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 744-747, 657–661. https://doi.org/10.1016/j.molstruc.2004.11.078
- Tawakoli, P. N., Al-Ahmad, A., Hoth-Hannig, W., Hannig, M., & Hannig, C. (2013). Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clinical Oral Investigations, 17(3), 841–850. https://doi.org/10.1007/s00784-012-0792-3
- Thier, S., Weiss, C., & Fickert, S. (2017). Arthroscopic autologous chondrocyte implantation in the hip for the treatment of full-thickness cartilage defects: A case series of 29 patients and review of the literature. SICOT-J, 3, 72–81. https://doi.org/10.1051/sicotj/2017037
- Tomihata, K., & Ikada, Y. (1997). In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials, 18(7), 567–575. https://doi.org/10.1016/S0142-9612(96)00167-6
- Tsai, S.-P., Hsieh, C.-Y., Hsieh, C.-Y., Wang, D. M., Huang, L. L. H., Lai, J. Y., & Hsieh, H. J. (2007). Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges. Journal of Applied Polymer Science, 105(4), 1774–1785. https://doi.org/10.1002/app.26157
- Vacanti, C. A., Bonassar, L. J., Vacanti, M. P., & Shufflebarger, J. (2001). Replacement of an avulsed phalanx with tissue-engineered bone. New England Journal of Medicine, 344(20), 1511–1514. https://doi.org/10.1056/nejm200105173442004
- Vachoud, L., Zydowicz, N., & Domard, A. (2000). Physicochemical behaviour of chitin gels. Carbohydrate Research, 326(4), 295–304. https://doi.org/10.1016/S0008-6215(00)00038-0
- Vanderhooft, J. L., Alcoutlabi, M., Magda, J. J., & Prestwich, G. D. (2009). Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosciences, 9(1), 20–28. https://doi.org/10.1002/mabi.200800141
- Vårum, K. M., Kristiansen Holme, H., Izume, M., Torger Stokke, B., & Smidsrød, O. (1996). Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochimica et Biophysica Acta (BBA) - General Subjects, 1291(1), 5–15. https://doi.org/10.1016/0304-4165(96)00038-4
- Wan, Y., Wang, Y., Liu, Z., Qu, X., Han, B., Bei, J., & Wang, S. (2005). Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials, 26(21), 4453–4459. https://doi.org/10.1016/j.biomaterials.2004.11.016
- West, J. L., & Hubbell, J. A. (1999). Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules, 32(1), 241–244. https://doi.org/10.1021/ma981296k
- Yang, M., Baranov, E., & Jiang, P. (2000). Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proceedings of the USA National Academy of Sciences, 97(3), 1206–1211. https://doi.org/10.1073/pnas.97.3.1206
- Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W., & Zhang, X. (1996). Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: Variability among different kinds of animals. Biomaterials, 17(22), 2131–2137. https://doi.org/10.1016/0142-9612(96)00044-0
- Yuan, H., De Bruijn, J. D., Li, Y., Feng, J., Yang, Z., De Groot, K., & Zhang, X. (2001). Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: A comparative study between porous alpha-TCP and beta-TCP. Journal of Materials Science: Materials in Medicine, 12(1), 7–13. https://doi.org/10.1023/A:1026792615665
- Yuan, H., Li, Y., De Bruijn, J., De Groot, K., & Zhang, X. (2000). Tissue responses of calcium phosphate cement: A study in dogs. Biomaterials, 21(12), 1283–1290. https://doi.org/10.1016/S0142-9612(00)00016-8
- Zhang, W., Moskowitz, R. W., Nuki, G., Abramson, S., Altman, R. D., Arden, N., … Tugwell, P. (2008). OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and Cartilage, 16(2), 137–162. https://doi.org/10.1016/j.joca.2007.12.013