Comparison between calcium carbonate and β-tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix
Corresponding Author
Ricardo Donate
Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas, Spain
Correspondence
Ricardo Donate, Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain.
Email: [email protected]
Search for more papers by this authorMario Monzón
Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas, Spain
Search for more papers by this authorZaida Ortega
Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
Search for more papers by this authorLing Wang
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an City, China
Search for more papers by this authorViviana Ribeiro
3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
ICVS/3Bs PT Government Associate Lab, Guimarães, Portugal
The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Guimarães, Portugal
Search for more papers by this authorDavid Pestana
Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas, Spain
Search for more papers by this authorJoaquim M. Oliveira
3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
ICVS/3Bs PT Government Associate Lab, Guimarães, Portugal
The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Guimarães, Portugal
Search for more papers by this authorRui L. Reis
3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
ICVS/3Bs PT Government Associate Lab, Guimarães, Portugal
The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Guimarães, Portugal
Search for more papers by this authorCorresponding Author
Ricardo Donate
Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas, Spain
Correspondence
Ricardo Donate, Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain.
Email: [email protected]
Search for more papers by this authorMario Monzón
Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas, Spain
Search for more papers by this authorZaida Ortega
Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
Search for more papers by this authorLing Wang
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an City, China
Search for more papers by this authorViviana Ribeiro
3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
ICVS/3Bs PT Government Associate Lab, Guimarães, Portugal
The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Guimarães, Portugal
Search for more papers by this authorDavid Pestana
Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas, Spain
Search for more papers by this authorJoaquim M. Oliveira
3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
ICVS/3Bs PT Government Associate Lab, Guimarães, Portugal
The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Guimarães, Portugal
Search for more papers by this authorRui L. Reis
3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
ICVS/3Bs PT Government Associate Lab, Guimarães, Portugal
The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Guimarães, Portugal
Search for more papers by this authorAbstract
In this study, polylactic acid (PLA)-based composite scaffolds with calcium carbonate (CaCO3) and beta-tricalcium phosphate (β-TCP) were obtained by 3D printing. These structures were evaluated as potential 3D structures for bone tissue regeneration. Morphological, mechanical, and biological tests were carried out in order to compare the effect of each additive (added in a concentration of 5% w/w) and the combination of both (2.5% w/w of each one), on the PLA matrix. The scaffolds manufactured had a mean pore size between 400–425 μm and a porosity value in the range of 50–60%. According to the results, both additives promoted an increase of the porosity, hydrophilicity, and surface roughness of the scaffolds, leading to a significant improvement of the metabolic activity of human osteoblastic osteosarcoma cells. The best results in terms of cell attachment after 7 days were obtained for the samples containing CaCO3 and β-TCP particles due to the synergistic effect of both additives, which results in an increase in osteoconductivity and in a microporosity that favours cell adhesion. These scaffolds (PLA:CaCO3:β-TCP 95:2.5:2.5) have suitable properties to be further evaluated for bone tissue engineering applications.
CONFLICT OF INTEREST
The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in the decision to publish the results.
Supporting Information
Filename | Description |
---|---|
term2990-sup-0001_F1.tifTIFF image, 5 MB |
Figure S1. Mechanical properties under 3 points bending testing of the non-porous samples manufactured by compression moulding. |
term2990-sup-0002_F2.tifTIFF image, 5.1 MB |
Figure S2. Mechanical properties of the 3D printed scaffolds under 3 points bending testing (*p < 0.05 and **p < 0.01 compared to the group of pure PLA samples). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abert, J., Amella, A., Weigelt, S., & Fischer, H. (2016). Degradation and swelling issues of poly-(d,l-lactide)/β-tricalcium phosphate/calcium carbonate composites for bone replacement. Journal of the Mechanical Behavior of Biomedical Materials, 54, 82–92. https://doi.org/10.1016/j.jmbbm.2015.09.016
- Alemán-Domínguez, M. E., Giusto, E., Ortega, Z., Tamaddon, M., Benítez, A. N., & Liu, C. (2018). Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials., 107, 521–528. https://doi.org/10.1002/jbm.b.34142
- Alemán-Domínguez, M. E., Ortega, Z., Benítez, A. N., Vilariño-Feltrer, G., Gómez-Tejedor, J. A., & Vallés-Lluch, A. (2018). Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. Journal of Applied Polymer Science, 135(14), 46134. https://doi.org/10.1002/app.46134
- Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly (DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483. https://doi.org/10.1016/S0142-9612(01)00382-9
- Bhatla, A., & Yao, Y. L. (2009). Effect of laser surface modification on the crystallinity of poly(l-lactic acid). Journal of Manufacturing Science and Engineering, Transactions of the ASME, 131(5), 0510041-05100411. https://doi.org/10.1115/1.3039519
- Canadas, R. F., Pina, S., Marques, A. P., Oliveira, J. M., & Reis, R. L. (2015). Cartilage and bone regeneration—How close are we to bedside? In Translating Regenerative Medicine to the Clinic (pp. 89–106).
- Chen, S., Guo, Y., Liu, R., Wu, S., Fang, J., Huang, B., … Chen, Z. (2018). Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids and Surfaces B: Biointerfaces, 164, 58–69. https://doi.org/10.1016/j.colsurfb.2018.01.022
- Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly (glycerol sebacate). European Polymer Journal, 87, 406–419. https://doi.org/10.1016/j.eurpolymj.2017.01.001
- Deplaine, H., Acosta-Santamaría, V. A., Vidaurre, A., Gómez Ribelles, J. L., Doblaré, M., Ochoa, I., & Gallego Ferrer, G. (2014). Evolution of the properties of a poly(L-lactic acid) scaffold with double porosity during in vitro degradation in a phosphate-buffered saline solution. Journal of Applied Polymer Science, 131(20), 40956. https://doi.org/10.1002/app.40956
- Domingos, M., Intranuovo, F., Gloria, A., Gristina, R., Ambrosio, L., Bártolo, P. J., & Favia, P. (2013). Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomaterialia, 9(4), 5997–6005. https://doi.org/10.1016/j.actbio.2012.12.031
- Drummer, D., Cifuentes-Cuéllar, S., & Rietzel, D. (2012). Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal, 18(6), 500–507. https://doi.org/10.1108/13552541211272045
- Esposito Corcione, C., Gervaso, F., Scalera, F., Montagna, F., Sannino, A., & Maffezzoli, A. (2017). The feasibility of printing polylactic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. Journal of Applied Polymer Science, 134(13), 44656. https://doi.org/10.1002/app.44656
- Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9(2), 63–84.
- Gómez-Lizárraga, K. K., Flores-Morales, C., Del Prado-Audelo, M. L., Álvarez-Pérez, M. A., Piña-Barba, M. C., & Escobedo, C. (2017). Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Materials Science and Engineering: C, 79(Supplement C), 326–335. https://doi.org/10.1016/j.msec.2017.05.003
- Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., … Hošek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 11(1), 1–21. https://doi.org/10.1186/s13036-017-0074-3
- Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529–2543. https://doi.org/10.1016/S0142-9612(00)00121-6
- Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid)s. Polymer, 39(2), 267–273. https://doi.org/10.1016/S0032-3861(97)00229-2
- Krikorian, V., & Pochan, D. J. (2005). Crystallization behavior of poly(L-lactic acid) nanocomposites: Nucleation and growth probed by infrared spectroscopy. Macromolecules, 38(15), 6520–6527. https://doi.org/10.1021/ma050739z
- Leong, K. F., Chua, C. K., Sudarmadji, N., & Yeong, W. Y. (2008). Engineering functionally graded tissue engineering scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 1(2), 140–152. https://doi.org/10.1016/j.jmbbm.2007.11.002
- Lou, T., Wang, X., Song, G., Gu, Z., & Yang, Z. (2014). Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. International Journal of Biological Macromolecules, 69, 464–470. https://doi.org/10.1016/j.ijbiomac.2014.06.004
- Patrício, T., Domingos, M., Gloria, A., D'Amora, U., Coelho, J. F., & Bártolo, P. J. (2014). Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal, 20(2), 145–156. https://doi.org/10.1108/RPJ-04-2012-0037
- Perez, R. A., & Mestres, G. (2016). Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering C, 61, 922–939. https://doi.org/10.1016/j.msec.2015.12.087
- Rakovsky, A., Gotman, I., Rabkin, E., & Gutmanas, E. Y. (2014). β-TCP-polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method. Journal of the Mechanical Behavior of Biomedical Materials, 32, 89–98. https://doi.org/10.1016/j.jmbbm.2013.12.022
- Ratner, B. D. (2013). Chapter I.1.5—Surface properties and surface characterization of biomaterials. In Biomaterials science ( Third ed.) (pp. 34–55). Academic Press.
10.1016/B978-0-08-087780-8.00005-X Google Scholar
- Ribeiro, V. P., Almeida, L. R., Martins, A. R., Pashkuleva, I., Marques, A. P., Ribeiro, A. S., … Reis, R. L. (2017). Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineeringapplications. Journal of Tissue Engineering and Regenerative Medicine, 11(10), 2853–2863. https://doi.org/10.1002/term.2189
- Sabino, M., Fermín, Z., Marielys, L., Moret, J., Rodríguez, D., Rezende, R. A., … Alvarez, J. (2013). In vitro biocompatibility study of biodegradable polyester scaffolds constructed using fused deposition modeling (FDM). Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline).
- Sachlos, E., Czernuszka, J. T., Gogolewski, S., & Dalby, M. (2003). Making tissue engineering scaffolds work. Review on the application ofsolid freeform fabrication technology to the production of tissue engineeringscaffolds. European Cells and Materials, 5, 29–40.
- Schiller, C., & Epple, M. (2003). Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials, 24(12), 2037–2043. https://doi.org/10.1016/S0142-9612(02)00634-8
- Schiller, C., Rasche, C., Wehmöller, M., Beckmann, F., Eufinger, H., Epple, M., & Weihe, S. (2004). Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate. Biomaterials, 25(7-8), 1239–1247. https://doi.org/10.1016/j.biomaterials.2003.08.047
- Takahashi, Y., Yamamoto, M., & Tabata, Y. (2005). Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials, 26(17), 3587–3596. https://doi.org/10.1016/j.biomaterials.2004.09.046
- Vallés-Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2010). Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P (EMA-co-HEA). European Polymer Journal, 46(5), 910–917. https://doi.org/10.1016/j.eurpolymj.2010.02.004
- Yang, G. H., Kim, M., & Kim, G. (2017). Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration. Biofabrication, 9(1). https://doi.org/10.1088/1758-5090/9/1/015005
- Zein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185. https://doi.org/10.1016/S0142-9612(01)00232-0